ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpdf Unicode version

Theorem genpdf 7264
Description: Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.)
Hypothesis
Ref Expression
genpdf.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >. )
Assertion
Ref Expression
genpdf  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } ,  { q  e. 
Q.  |  E. r  e.  ( 2nd `  w
) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
Distinct variable group:    r, q, s, v, w
Allowed substitution hints:    F( w, v, s, r, q)    G( w, v, s, r, q)

Proof of Theorem genpdf
StepHypRef Expression
1 genpdf.1 . 2  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >. )
2 prop 7231 . . . . . . 7  |-  ( w  e.  P.  ->  <. ( 1st `  w ) ,  ( 2nd `  w
) >.  e.  P. )
3 elprnql 7237 . . . . . . 7  |-  ( (
<. ( 1st `  w
) ,  ( 2nd `  w ) >.  e.  P.  /\  r  e.  ( 1st `  w ) )  -> 
r  e.  Q. )
42, 3sylan 279 . . . . . 6  |-  ( ( w  e.  P.  /\  r  e.  ( 1st `  w ) )  -> 
r  e.  Q. )
54adantlr 466 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  r  e.  ( 1st `  w ) )  ->  r  e.  Q. )
6 prop 7231 . . . . . . 7  |-  ( v  e.  P.  ->  <. ( 1st `  v ) ,  ( 2nd `  v
) >.  e.  P. )
7 elprnql 7237 . . . . . . 7  |-  ( (
<. ( 1st `  v
) ,  ( 2nd `  v ) >.  e.  P.  /\  s  e.  ( 1st `  v ) )  -> 
s  e.  Q. )
86, 7sylan 279 . . . . . 6  |-  ( ( v  e.  P.  /\  s  e.  ( 1st `  v ) )  -> 
s  e.  Q. )
98adantll 465 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  s  e.  ( 1st `  v ) )  ->  s  e.  Q. )
105, 9genpdflem 7263 . . . 4  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) }  =  { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } )
11 elprnqu 7238 . . . . . . 7  |-  ( (
<. ( 1st `  w
) ,  ( 2nd `  w ) >.  e.  P.  /\  r  e.  ( 2nd `  w ) )  -> 
r  e.  Q. )
122, 11sylan 279 . . . . . 6  |-  ( ( w  e.  P.  /\  r  e.  ( 2nd `  w ) )  -> 
r  e.  Q. )
1312adantlr 466 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  r  e.  ( 2nd `  w ) )  ->  r  e.  Q. )
14 elprnqu 7238 . . . . . . 7  |-  ( (
<. ( 1st `  v
) ,  ( 2nd `  v ) >.  e.  P.  /\  s  e.  ( 2nd `  v ) )  -> 
s  e.  Q. )
156, 14sylan 279 . . . . . 6  |-  ( ( v  e.  P.  /\  s  e.  ( 2nd `  v ) )  -> 
s  e.  Q. )
1615adantll 465 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  s  e.  ( 2nd `  v ) )  ->  s  e.  Q. )
1713, 16genpdflem 7263 . . . 4  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) }  =  { q  e.  Q.  |  E. r  e.  ( 2nd `  w ) E. s  e.  ( 2nd `  v ) q  =  ( r G s ) } )
1810, 17opeq12d 3679 . . 3  |-  ( ( w  e.  P.  /\  v  e.  P. )  -> 
<. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >.  = 
<. { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } ,  { q  e. 
Q.  |  E. r  e.  ( 2nd `  w
) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
1918mpoeq3ia 5790 . 2  |-  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  w
)  /\  s  e.  ( 1st `  v )  /\  q  =  ( r G s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >. )  =  ( w  e. 
P. ,  v  e. 
P.  |->  <. { q  e. 
Q.  |  E. r  e.  ( 1st `  w
) E. s  e.  ( 1st `  v
) q  =  ( r G s ) } ,  { q  e.  Q.  |  E. r  e.  ( 2nd `  w ) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
201, 19eqtri 2135 1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } ,  { q  e. 
Q.  |  E. r  e.  ( 2nd `  w
) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    /\ w3a 945    = wceq 1314    e. wcel 1463   E.wrex 2391   {crab 2394   <.cop 3496   ` cfv 5081  (class class class)co 5728    e. cmpo 5730   1stc1st 5990   2ndc2nd 5991   Q.cnq 7036   P.cnp 7047
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-qs 6389  df-ni 7060  df-nqqs 7104  df-inp 7222
This theorem is referenced by:  genipv  7265
  Copyright terms: Public domain W3C validator