ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpdf Unicode version

Theorem genpdf 7695
Description: Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.)
Hypothesis
Ref Expression
genpdf.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >. )
Assertion
Ref Expression
genpdf  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } ,  { q  e. 
Q.  |  E. r  e.  ( 2nd `  w
) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
Distinct variable group:    r, q, s, v, w
Allowed substitution hints:    F( w, v, s, r, q)    G( w, v, s, r, q)

Proof of Theorem genpdf
StepHypRef Expression
1 genpdf.1 . 2  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >. )
2 prop 7662 . . . . . . 7  |-  ( w  e.  P.  ->  <. ( 1st `  w ) ,  ( 2nd `  w
) >.  e.  P. )
3 elprnql 7668 . . . . . . 7  |-  ( (
<. ( 1st `  w
) ,  ( 2nd `  w ) >.  e.  P.  /\  r  e.  ( 1st `  w ) )  -> 
r  e.  Q. )
42, 3sylan 283 . . . . . 6  |-  ( ( w  e.  P.  /\  r  e.  ( 1st `  w ) )  -> 
r  e.  Q. )
54adantlr 477 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  r  e.  ( 1st `  w ) )  ->  r  e.  Q. )
6 prop 7662 . . . . . . 7  |-  ( v  e.  P.  ->  <. ( 1st `  v ) ,  ( 2nd `  v
) >.  e.  P. )
7 elprnql 7668 . . . . . . 7  |-  ( (
<. ( 1st `  v
) ,  ( 2nd `  v ) >.  e.  P.  /\  s  e.  ( 1st `  v ) )  -> 
s  e.  Q. )
86, 7sylan 283 . . . . . 6  |-  ( ( v  e.  P.  /\  s  e.  ( 1st `  v ) )  -> 
s  e.  Q. )
98adantll 476 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  s  e.  ( 1st `  v ) )  ->  s  e.  Q. )
105, 9genpdflem 7694 . . . 4  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) }  =  { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } )
11 elprnqu 7669 . . . . . . 7  |-  ( (
<. ( 1st `  w
) ,  ( 2nd `  w ) >.  e.  P.  /\  r  e.  ( 2nd `  w ) )  -> 
r  e.  Q. )
122, 11sylan 283 . . . . . 6  |-  ( ( w  e.  P.  /\  r  e.  ( 2nd `  w ) )  -> 
r  e.  Q. )
1312adantlr 477 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  r  e.  ( 2nd `  w ) )  ->  r  e.  Q. )
14 elprnqu 7669 . . . . . . 7  |-  ( (
<. ( 1st `  v
) ,  ( 2nd `  v ) >.  e.  P.  /\  s  e.  ( 2nd `  v ) )  -> 
s  e.  Q. )
156, 14sylan 283 . . . . . 6  |-  ( ( v  e.  P.  /\  s  e.  ( 2nd `  v ) )  -> 
s  e.  Q. )
1615adantll 476 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  s  e.  ( 2nd `  v ) )  ->  s  e.  Q. )
1713, 16genpdflem 7694 . . . 4  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) }  =  { q  e.  Q.  |  E. r  e.  ( 2nd `  w ) E. s  e.  ( 2nd `  v ) q  =  ( r G s ) } )
1810, 17opeq12d 3865 . . 3  |-  ( ( w  e.  P.  /\  v  e.  P. )  -> 
<. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >.  = 
<. { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } ,  { q  e. 
Q.  |  E. r  e.  ( 2nd `  w
) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
1918mpoeq3ia 6069 . 2  |-  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  w
)  /\  s  e.  ( 1st `  v )  /\  q  =  ( r G s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >. )  =  ( w  e. 
P. ,  v  e. 
P.  |->  <. { q  e. 
Q.  |  E. r  e.  ( 1st `  w
) E. s  e.  ( 1st `  v
) q  =  ( r G s ) } ,  { q  e.  Q.  |  E. r  e.  ( 2nd `  w ) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
201, 19eqtri 2250 1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } ,  { q  e. 
Q.  |  E. r  e.  ( 2nd `  w
) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   {crab 2512   <.cop 3669   ` cfv 5318  (class class class)co 6001    e. cmpo 6003   1stc1st 6284   2ndc2nd 6285   Q.cnq 7467   P.cnp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-qs 6686  df-ni 7491  df-nqqs 7535  df-inp 7653
This theorem is referenced by:  genipv  7696
  Copyright terms: Public domain W3C validator