ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpdf Unicode version

Theorem genpdf 7568
Description: Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.)
Hypothesis
Ref Expression
genpdf.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >. )
Assertion
Ref Expression
genpdf  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } ,  { q  e. 
Q.  |  E. r  e.  ( 2nd `  w
) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
Distinct variable group:    r, q, s, v, w
Allowed substitution hints:    F( w, v, s, r, q)    G( w, v, s, r, q)

Proof of Theorem genpdf
StepHypRef Expression
1 genpdf.1 . 2  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >. )
2 prop 7535 . . . . . . 7  |-  ( w  e.  P.  ->  <. ( 1st `  w ) ,  ( 2nd `  w
) >.  e.  P. )
3 elprnql 7541 . . . . . . 7  |-  ( (
<. ( 1st `  w
) ,  ( 2nd `  w ) >.  e.  P.  /\  r  e.  ( 1st `  w ) )  -> 
r  e.  Q. )
42, 3sylan 283 . . . . . 6  |-  ( ( w  e.  P.  /\  r  e.  ( 1st `  w ) )  -> 
r  e.  Q. )
54adantlr 477 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  r  e.  ( 1st `  w ) )  ->  r  e.  Q. )
6 prop 7535 . . . . . . 7  |-  ( v  e.  P.  ->  <. ( 1st `  v ) ,  ( 2nd `  v
) >.  e.  P. )
7 elprnql 7541 . . . . . . 7  |-  ( (
<. ( 1st `  v
) ,  ( 2nd `  v ) >.  e.  P.  /\  s  e.  ( 1st `  v ) )  -> 
s  e.  Q. )
86, 7sylan 283 . . . . . 6  |-  ( ( v  e.  P.  /\  s  e.  ( 1st `  v ) )  -> 
s  e.  Q. )
98adantll 476 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  s  e.  ( 1st `  v ) )  ->  s  e.  Q. )
105, 9genpdflem 7567 . . . 4  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) }  =  { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } )
11 elprnqu 7542 . . . . . . 7  |-  ( (
<. ( 1st `  w
) ,  ( 2nd `  w ) >.  e.  P.  /\  r  e.  ( 2nd `  w ) )  -> 
r  e.  Q. )
122, 11sylan 283 . . . . . 6  |-  ( ( w  e.  P.  /\  r  e.  ( 2nd `  w ) )  -> 
r  e.  Q. )
1312adantlr 477 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  r  e.  ( 2nd `  w ) )  ->  r  e.  Q. )
14 elprnqu 7542 . . . . . . 7  |-  ( (
<. ( 1st `  v
) ,  ( 2nd `  v ) >.  e.  P.  /\  s  e.  ( 2nd `  v ) )  -> 
s  e.  Q. )
156, 14sylan 283 . . . . . 6  |-  ( ( v  e.  P.  /\  s  e.  ( 2nd `  v ) )  -> 
s  e.  Q. )
1615adantll 476 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  s  e.  ( 2nd `  v ) )  ->  s  e.  Q. )
1713, 16genpdflem 7567 . . . 4  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) }  =  { q  e.  Q.  |  E. r  e.  ( 2nd `  w ) E. s  e.  ( 2nd `  v ) q  =  ( r G s ) } )
1810, 17opeq12d 3812 . . 3  |-  ( ( w  e.  P.  /\  v  e.  P. )  -> 
<. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >.  = 
<. { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } ,  { q  e. 
Q.  |  E. r  e.  ( 2nd `  w
) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
1918mpoeq3ia 5983 . 2  |-  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  w
)  /\  s  e.  ( 1st `  v )  /\  q  =  ( r G s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >. )  =  ( w  e. 
P. ,  v  e. 
P.  |->  <. { q  e. 
Q.  |  E. r  e.  ( 1st `  w
) E. s  e.  ( 1st `  v
) q  =  ( r G s ) } ,  { q  e.  Q.  |  E. r  e.  ( 2nd `  w ) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
201, 19eqtri 2214 1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } ,  { q  e. 
Q.  |  E. r  e.  ( 2nd `  w
) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   E.wrex 2473   {crab 2476   <.cop 3621   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   1stc1st 6191   2ndc2nd 6192   Q.cnq 7340   P.cnp 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-qs 6593  df-ni 7364  df-nqqs 7408  df-inp 7526
This theorem is referenced by:  genipv  7569
  Copyright terms: Public domain W3C validator