ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infn0 Unicode version

Theorem infn0 7067
Description: An infinite set is not empty. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
infn0  |-  ( om  ~<_  A  ->  A  =/=  (/) )

Proof of Theorem infn0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 infm 7066 . 2  |-  ( om  ~<_  A  ->  E. x  x  e.  A )
2 n0r 3505 . 2  |-  ( E. x  x  e.  A  ->  A  =/=  (/) )
31, 2syl 14 1  |-  ( om  ~<_  A  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1538    e. wcel 2200    =/= wne 2400   (/)c0 3491   class class class wbr 4083   omcom 4682    ~<_ cdom 6886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fv 5326  df-dom 6889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator