ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsn0 Unicode version

Theorem elqsn0 6570
Description: A quotient set doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
elqsn0  |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  B  =/=  (/) )

Proof of Theorem elqsn0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elqsn0m 6569 . 2  |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  E. x  x  e.  B )
2 n0r 3422 . 2  |-  ( E. x  x  e.  B  ->  B  =/=  (/) )
31, 2syl 14 1  |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  B  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136    =/= wne 2336   (/)c0 3409   dom cdm 4604   /.cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-ec 6503  df-qs 6507
This theorem is referenced by:  0nnq  7305  0nsr  7690
  Copyright terms: Public domain W3C validator