ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsn0 Unicode version

Theorem elqsn0 6582
Description: A quotient set doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
elqsn0  |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  B  =/=  (/) )

Proof of Theorem elqsn0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elqsn0m 6581 . 2  |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  E. x  x  e.  B )
2 n0r 3428 . 2  |-  ( E. x  x  e.  B  ->  B  =/=  (/) )
31, 2syl 14 1  |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  B  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141    =/= wne 2340   (/)c0 3414   dom cdm 4611   /.cqs 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-ec 6515  df-qs 6519
This theorem is referenced by:  0nnq  7326  0nsr  7711
  Copyright terms: Public domain W3C validator