ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnzi Unicode version

Theorem opnzi 4236
Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4235). (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1  |-  A  e. 
_V
opth1.2  |-  B  e. 
_V
Assertion
Ref Expression
opnzi  |-  <. A ,  B >.  =/=  (/)

Proof of Theorem opnzi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . 3  |-  A  e. 
_V
2 opth1.2 . . 3  |-  B  e. 
_V
3 opm 4235 . . 3  |-  ( E. x  x  e.  <. A ,  B >.  <->  ( A  e.  _V  /\  B  e. 
_V ) )
41, 2, 3mpbir2an 942 . 2  |-  E. x  x  e.  <. A ,  B >.
5 n0r 3437 . 2  |-  ( E. x  x  e.  <. A ,  B >.  ->  <. A ,  B >.  =/=  (/) )
64, 5ax-mp 5 1  |-  <. A ,  B >.  =/=  (/)
Colors of variables: wff set class
Syntax hints:   E.wex 1492    e. wcel 2148    =/= wne 2347   _Vcvv 2738   (/)c0 3423   <.cop 3596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602
This theorem is referenced by:  0nelxp  4655  0neqopab  5920
  Copyright terms: Public domain W3C validator