Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opnzi | Unicode version |
Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4212). (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opth1.1 | |
opth1.2 |
Ref | Expression |
---|---|
opnzi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . 3 | |
2 | opth1.2 | . . 3 | |
3 | opm 4212 | . . 3 | |
4 | 1, 2, 3 | mpbir2an 932 | . 2 |
5 | n0r 3422 | . 2 | |
6 | 4, 5 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wex 1480 wcel 2136 wne 2336 cvv 2726 c0 3409 cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: 0nelxp 4632 0neqopab 5887 |
Copyright terms: Public domain | W3C validator |