ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnzi Unicode version

Theorem opnzi 4297
Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4296). (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1  |-  A  e. 
_V
opth1.2  |-  B  e. 
_V
Assertion
Ref Expression
opnzi  |-  <. A ,  B >.  =/=  (/)

Proof of Theorem opnzi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . 3  |-  A  e. 
_V
2 opth1.2 . . 3  |-  B  e. 
_V
3 opm 4296 . . 3  |-  ( E. x  x  e.  <. A ,  B >.  <->  ( A  e.  _V  /\  B  e. 
_V ) )
41, 2, 3mpbir2an 945 . 2  |-  E. x  x  e.  <. A ,  B >.
5 n0r 3482 . 2  |-  ( E. x  x  e.  <. A ,  B >.  ->  <. A ,  B >.  =/=  (/) )
64, 5ax-mp 5 1  |-  <. A ,  B >.  =/=  (/)
Colors of variables: wff set class
Syntax hints:   E.wex 1516    e. wcel 2178    =/= wne 2378   _Vcvv 2776   (/)c0 3468   <.cop 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652
This theorem is referenced by:  0nelxp  4721  0neqopab  6013
  Copyright terms: Public domain W3C validator