ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnzi Unicode version

Theorem opnzi 4321
Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4320). (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1  |-  A  e. 
_V
opth1.2  |-  B  e. 
_V
Assertion
Ref Expression
opnzi  |-  <. A ,  B >.  =/=  (/)

Proof of Theorem opnzi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . 3  |-  A  e. 
_V
2 opth1.2 . . 3  |-  B  e. 
_V
3 opm 4320 . . 3  |-  ( E. x  x  e.  <. A ,  B >.  <->  ( A  e.  _V  /\  B  e. 
_V ) )
41, 2, 3mpbir2an 948 . 2  |-  E. x  x  e.  <. A ,  B >.
5 n0r 3505 . 2  |-  ( E. x  x  e.  <. A ,  B >.  ->  <. A ,  B >.  =/=  (/) )
64, 5ax-mp 5 1  |-  <. A ,  B >.  =/=  (/)
Colors of variables: wff set class
Syntax hints:   E.wex 1538    e. wcel 2200    =/= wne 2400   _Vcvv 2799   (/)c0 3491   <.cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  0nelxp  4747  0neqopab  6049
  Copyright terms: Public domain W3C validator