ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnzi Unicode version

Theorem opnzi 4264
Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4263). (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1  |-  A  e. 
_V
opth1.2  |-  B  e. 
_V
Assertion
Ref Expression
opnzi  |-  <. A ,  B >.  =/=  (/)

Proof of Theorem opnzi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . 3  |-  A  e. 
_V
2 opth1.2 . . 3  |-  B  e. 
_V
3 opm 4263 . . 3  |-  ( E. x  x  e.  <. A ,  B >.  <->  ( A  e.  _V  /\  B  e. 
_V ) )
41, 2, 3mpbir2an 944 . 2  |-  E. x  x  e.  <. A ,  B >.
5 n0r 3460 . 2  |-  ( E. x  x  e.  <. A ,  B >.  ->  <. A ,  B >.  =/=  (/) )
64, 5ax-mp 5 1  |-  <. A ,  B >.  =/=  (/)
Colors of variables: wff set class
Syntax hints:   E.wex 1503    e. wcel 2164    =/= wne 2364   _Vcvv 2760   (/)c0 3446   <.cop 3621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627
This theorem is referenced by:  0nelxp  4687  0neqopab  5963
  Copyright terms: Public domain W3C validator