ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnzi Unicode version

Theorem opnzi 4220
Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4219). (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1  |-  A  e. 
_V
opth1.2  |-  B  e. 
_V
Assertion
Ref Expression
opnzi  |-  <. A ,  B >.  =/=  (/)

Proof of Theorem opnzi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . 3  |-  A  e. 
_V
2 opth1.2 . . 3  |-  B  e. 
_V
3 opm 4219 . . 3  |-  ( E. x  x  e.  <. A ,  B >.  <->  ( A  e.  _V  /\  B  e. 
_V ) )
41, 2, 3mpbir2an 937 . 2  |-  E. x  x  e.  <. A ,  B >.
5 n0r 3428 . 2  |-  ( E. x  x  e.  <. A ,  B >.  ->  <. A ,  B >.  =/=  (/) )
64, 5ax-mp 5 1  |-  <. A ,  B >.  =/=  (/)
Colors of variables: wff set class
Syntax hints:   E.wex 1485    e. wcel 2141    =/= wne 2340   _Vcvv 2730   (/)c0 3414   <.cop 3586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592
This theorem is referenced by:  0nelxp  4639  0neqopab  5898
  Copyright terms: Public domain W3C validator