ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nbrne1 GIF version

Theorem nbrne1 4101
Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
Assertion
Ref Expression
nbrne1 ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵𝐶)

Proof of Theorem nbrne1
StepHypRef Expression
1 breq2 4086 . . . 4 (𝐵 = 𝐶 → (𝐴𝑅𝐵𝐴𝑅𝐶))
21biimpcd 159 . . 3 (𝐴𝑅𝐵 → (𝐵 = 𝐶𝐴𝑅𝐶))
32necon3bd 2443 . 2 (𝐴𝑅𝐵 → (¬ 𝐴𝑅𝐶𝐵𝐶))
43imp 124 1 ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1395  wne 2400   class class class wbr 4082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083
This theorem is referenced by:  zeneo  12377
  Copyright terms: Public domain W3C validator