ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rennim Unicode version

Theorem rennim 10774
Description: A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
rennim  |-  ( A  e.  RR  ->  (
_i  x.  A )  e/  RR+ )

Proof of Theorem rennim
StepHypRef Expression
1 ax-icn 7715 . . . . . . 7  |-  _i  e.  CC
2 recn 7753 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
3 mulcl 7747 . . . . . . 7  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
41, 2, 3sylancr 410 . . . . . 6  |-  ( A  e.  RR  ->  (
_i  x.  A )  e.  CC )
5 rpre 9448 . . . . . . 7  |-  ( ( _i  x.  A )  e.  RR+  ->  ( _i  x.  A )  e.  RR )
6 rereb 10635 . . . . . . 7  |-  ( ( _i  x.  A )  e.  CC  ->  (
( _i  x.  A
)  e.  RR  <->  ( Re `  ( _i  x.  A
) )  =  ( _i  x.  A ) ) )
75, 6syl5ib 153 . . . . . 6  |-  ( ( _i  x.  A )  e.  CC  ->  (
( _i  x.  A
)  e.  RR+  ->  ( Re `  ( _i  x.  A ) )  =  ( _i  x.  A ) ) )
84, 7syl 14 . . . . 5  |-  ( A  e.  RR  ->  (
( _i  x.  A
)  e.  RR+  ->  ( Re `  ( _i  x.  A ) )  =  ( _i  x.  A ) ) )
94addid2d 7912 . . . . . . . 8  |-  ( A  e.  RR  ->  (
0  +  ( _i  x.  A ) )  =  ( _i  x.  A ) )
109fveq2d 5425 . . . . . . 7  |-  ( A  e.  RR  ->  (
Re `  ( 0  +  ( _i  x.  A ) ) )  =  ( Re `  ( _i  x.  A
) ) )
11 0re 7766 . . . . . . . 8  |-  0  e.  RR
12 crre 10629 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( Re `  (
0  +  ( _i  x.  A ) ) )  =  0 )
1311, 12mpan 420 . . . . . . 7  |-  ( A  e.  RR  ->  (
Re `  ( 0  +  ( _i  x.  A ) ) )  =  0 )
1410, 13eqtr3d 2174 . . . . . 6  |-  ( A  e.  RR  ->  (
Re `  ( _i  x.  A ) )  =  0 )
1514eqeq1d 2148 . . . . 5  |-  ( A  e.  RR  ->  (
( Re `  (
_i  x.  A )
)  =  ( _i  x.  A )  <->  0  =  ( _i  x.  A
) ) )
168, 15sylibd 148 . . . 4  |-  ( A  e.  RR  ->  (
( _i  x.  A
)  e.  RR+  ->  0  =  ( _i  x.  A ) ) )
17 rpne0 9457 . . . . . 6  |-  ( ( _i  x.  A )  e.  RR+  ->  ( _i  x.  A )  =/=  0 )
1817necon2bi 2363 . . . . 5  |-  ( ( _i  x.  A )  =  0  ->  -.  ( _i  x.  A
)  e.  RR+ )
1918eqcoms 2142 . . . 4  |-  ( 0  =  ( _i  x.  A )  ->  -.  ( _i  x.  A
)  e.  RR+ )
2016, 19syl6 33 . . 3  |-  ( A  e.  RR  ->  (
( _i  x.  A
)  e.  RR+  ->  -.  ( _i  x.  A
)  e.  RR+ )
)
2120pm2.01d 607 . 2  |-  ( A  e.  RR  ->  -.  ( _i  x.  A
)  e.  RR+ )
22 df-nel 2404 . 2  |-  ( ( _i  x.  A )  e/  RR+  <->  -.  ( _i  x.  A )  e.  RR+ )
2321, 22sylibr 133 1  |-  ( A  e.  RR  ->  (
_i  x.  A )  e/  RR+ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1331    e. wcel 1480    e/ wnel 2403   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   _ici 7622    + caddc 7623    x. cmul 7625   RR+crp 9441   Recre 10612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-2 8779  df-rp 9442  df-cj 10614  df-re 10615  df-im 10616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator