ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rennim Unicode version

Theorem rennim 11146
Description: A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
rennim  |-  ( A  e.  RR  ->  (
_i  x.  A )  e/  RR+ )

Proof of Theorem rennim
StepHypRef Expression
1 ax-icn 7967 . . . . . . 7  |-  _i  e.  CC
2 recn 8005 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
3 mulcl 7999 . . . . . . 7  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
41, 2, 3sylancr 414 . . . . . 6  |-  ( A  e.  RR  ->  (
_i  x.  A )  e.  CC )
5 rpre 9726 . . . . . . 7  |-  ( ( _i  x.  A )  e.  RR+  ->  ( _i  x.  A )  e.  RR )
6 rereb 11007 . . . . . . 7  |-  ( ( _i  x.  A )  e.  CC  ->  (
( _i  x.  A
)  e.  RR  <->  ( Re `  ( _i  x.  A
) )  =  ( _i  x.  A ) ) )
75, 6imbitrid 154 . . . . . 6  |-  ( ( _i  x.  A )  e.  CC  ->  (
( _i  x.  A
)  e.  RR+  ->  ( Re `  ( _i  x.  A ) )  =  ( _i  x.  A ) ) )
84, 7syl 14 . . . . 5  |-  ( A  e.  RR  ->  (
( _i  x.  A
)  e.  RR+  ->  ( Re `  ( _i  x.  A ) )  =  ( _i  x.  A ) ) )
94addlidd 8169 . . . . . . . 8  |-  ( A  e.  RR  ->  (
0  +  ( _i  x.  A ) )  =  ( _i  x.  A ) )
109fveq2d 5558 . . . . . . 7  |-  ( A  e.  RR  ->  (
Re `  ( 0  +  ( _i  x.  A ) ) )  =  ( Re `  ( _i  x.  A
) ) )
11 0re 8019 . . . . . . . 8  |-  0  e.  RR
12 crre 11001 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( Re `  (
0  +  ( _i  x.  A ) ) )  =  0 )
1311, 12mpan 424 . . . . . . 7  |-  ( A  e.  RR  ->  (
Re `  ( 0  +  ( _i  x.  A ) ) )  =  0 )
1410, 13eqtr3d 2228 . . . . . 6  |-  ( A  e.  RR  ->  (
Re `  ( _i  x.  A ) )  =  0 )
1514eqeq1d 2202 . . . . 5  |-  ( A  e.  RR  ->  (
( Re `  (
_i  x.  A )
)  =  ( _i  x.  A )  <->  0  =  ( _i  x.  A
) ) )
168, 15sylibd 149 . . . 4  |-  ( A  e.  RR  ->  (
( _i  x.  A
)  e.  RR+  ->  0  =  ( _i  x.  A ) ) )
17 rpne0 9735 . . . . . 6  |-  ( ( _i  x.  A )  e.  RR+  ->  ( _i  x.  A )  =/=  0 )
1817necon2bi 2419 . . . . 5  |-  ( ( _i  x.  A )  =  0  ->  -.  ( _i  x.  A
)  e.  RR+ )
1918eqcoms 2196 . . . 4  |-  ( 0  =  ( _i  x.  A )  ->  -.  ( _i  x.  A
)  e.  RR+ )
2016, 19syl6 33 . . 3  |-  ( A  e.  RR  ->  (
( _i  x.  A
)  e.  RR+  ->  -.  ( _i  x.  A
)  e.  RR+ )
)
2120pm2.01d 619 . 2  |-  ( A  e.  RR  ->  -.  ( _i  x.  A
)  e.  RR+ )
22 df-nel 2460 . 2  |-  ( ( _i  x.  A )  e/  RR+  <->  -.  ( _i  x.  A )  e.  RR+ )
2321, 22sylibr 134 1  |-  ( A  e.  RR  ->  (
_i  x.  A )  e/  RR+ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364    e. wcel 2164    e/ wnel 2459   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   _ici 7874    + caddc 7875    x. cmul 7877   RR+crp 9719   Recre 10984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-2 9041  df-rp 9720  df-cj 10986  df-re 10987  df-im 10988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator