ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rennim Unicode version

Theorem rennim 11499
Description: A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
rennim  |-  ( A  e.  RR  ->  (
_i  x.  A )  e/  RR+ )

Proof of Theorem rennim
StepHypRef Expression
1 ax-icn 8082 . . . . . . 7  |-  _i  e.  CC
2 recn 8120 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
3 mulcl 8114 . . . . . . 7  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
41, 2, 3sylancr 414 . . . . . 6  |-  ( A  e.  RR  ->  (
_i  x.  A )  e.  CC )
5 rpre 9844 . . . . . . 7  |-  ( ( _i  x.  A )  e.  RR+  ->  ( _i  x.  A )  e.  RR )
6 rereb 11360 . . . . . . 7  |-  ( ( _i  x.  A )  e.  CC  ->  (
( _i  x.  A
)  e.  RR  <->  ( Re `  ( _i  x.  A
) )  =  ( _i  x.  A ) ) )
75, 6imbitrid 154 . . . . . 6  |-  ( ( _i  x.  A )  e.  CC  ->  (
( _i  x.  A
)  e.  RR+  ->  ( Re `  ( _i  x.  A ) )  =  ( _i  x.  A ) ) )
84, 7syl 14 . . . . 5  |-  ( A  e.  RR  ->  (
( _i  x.  A
)  e.  RR+  ->  ( Re `  ( _i  x.  A ) )  =  ( _i  x.  A ) ) )
94addlidd 8284 . . . . . . . 8  |-  ( A  e.  RR  ->  (
0  +  ( _i  x.  A ) )  =  ( _i  x.  A ) )
109fveq2d 5627 . . . . . . 7  |-  ( A  e.  RR  ->  (
Re `  ( 0  +  ( _i  x.  A ) ) )  =  ( Re `  ( _i  x.  A
) ) )
11 0re 8134 . . . . . . . 8  |-  0  e.  RR
12 crre 11354 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( Re `  (
0  +  ( _i  x.  A ) ) )  =  0 )
1311, 12mpan 424 . . . . . . 7  |-  ( A  e.  RR  ->  (
Re `  ( 0  +  ( _i  x.  A ) ) )  =  0 )
1410, 13eqtr3d 2264 . . . . . 6  |-  ( A  e.  RR  ->  (
Re `  ( _i  x.  A ) )  =  0 )
1514eqeq1d 2238 . . . . 5  |-  ( A  e.  RR  ->  (
( Re `  (
_i  x.  A )
)  =  ( _i  x.  A )  <->  0  =  ( _i  x.  A
) ) )
168, 15sylibd 149 . . . 4  |-  ( A  e.  RR  ->  (
( _i  x.  A
)  e.  RR+  ->  0  =  ( _i  x.  A ) ) )
17 rpne0 9853 . . . . . 6  |-  ( ( _i  x.  A )  e.  RR+  ->  ( _i  x.  A )  =/=  0 )
1817necon2bi 2455 . . . . 5  |-  ( ( _i  x.  A )  =  0  ->  -.  ( _i  x.  A
)  e.  RR+ )
1918eqcoms 2232 . . . 4  |-  ( 0  =  ( _i  x.  A )  ->  -.  ( _i  x.  A
)  e.  RR+ )
2016, 19syl6 33 . . 3  |-  ( A  e.  RR  ->  (
( _i  x.  A
)  e.  RR+  ->  -.  ( _i  x.  A
)  e.  RR+ )
)
2120pm2.01d 621 . 2  |-  ( A  e.  RR  ->  -.  ( _i  x.  A
)  e.  RR+ )
22 df-nel 2496 . 2  |-  ( ( _i  x.  A )  e/  RR+  <->  -.  ( _i  x.  A )  e.  RR+ )
2321, 22sylibr 134 1  |-  ( A  e.  RR  ->  (
_i  x.  A )  e/  RR+ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395    e. wcel 2200    e/ wnel 2495   ` cfv 5314  (class class class)co 5994   CCcc 7985   RRcr 7986   0cc0 7987   _ici 7989    + caddc 7990    x. cmul 7992   RR+crp 9837   Recre 11337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-po 4384  df-iso 4385  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-2 9157  df-rp 9838  df-cj 11339  df-re 11340  df-im 11341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator