ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem8 Unicode version

Theorem 2sqlem8 15280
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2sqlem9.5  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
2sqlem9.7  |-  ( ph  ->  M  ||  N )
2sqlem8.n  |-  ( ph  ->  N  e.  NN )
2sqlem8.m  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
2sqlem8.1  |-  ( ph  ->  A  e.  ZZ )
2sqlem8.2  |-  ( ph  ->  B  e.  ZZ )
2sqlem8.3  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
2sqlem8.4  |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem8.c  |-  C  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2sqlem8.d  |-  D  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2sqlem8.e  |-  E  =  ( C  /  ( C  gcd  D ) )
2sqlem8.f  |-  F  =  ( D  /  ( C  gcd  D ) )
Assertion
Ref Expression
2sqlem8  |-  ( ph  ->  M  e.  S )
Distinct variable groups:    a, b, w, x, y, z    A, a, x, y, z    x, C    ph, x, y    B, a, b, x, y    M, a, b, x, y, z    S, a, b, x, y, z    x, D    E, a, x, y, z    x, N, y, z    Y, a, b, x, y    F, a, x, y, z
Allowed substitution hints:    ph( z, w, a, b)    A( w, b)    B( z, w)    C( y, z, w, a, b)    D( y, z, w, a, b)    S( w)    E( w, b)    F( w, b)    M( w)    N( w, a, b)    Y( z, w)

Proof of Theorem 2sqlem8
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . 2  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2 2sqlem8.m . . . 4  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
3 eluz2b3 9672 . . . 4  |-  ( M  e.  ( ZZ>= `  2
)  <->  ( M  e.  NN  /\  M  =/=  1 ) )
42, 3sylib 122 . . 3  |-  ( ph  ->  ( M  e.  NN  /\  M  =/=  1 ) )
54simpld 112 . 2  |-  ( ph  ->  M  e.  NN )
6 2sqlem9.7 . . . . . . 7  |-  ( ph  ->  M  ||  N )
7 eluzelz 9604 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  2
)  ->  M  e.  ZZ )
82, 7syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
9 2sqlem8.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
109nnzd 9441 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
11 2sqlem8.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
12 2sqlem8.c . . . . . . . . . . . 12  |-  C  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
1311, 5, 124sqlem5 12523 . . . . . . . . . . 11  |-  ( ph  ->  ( C  e.  ZZ  /\  ( ( A  -  C )  /  M
)  e.  ZZ ) )
1413simpld 112 . . . . . . . . . 10  |-  ( ph  ->  C  e.  ZZ )
15 zsqcl 10684 . . . . . . . . . 10  |-  ( C  e.  ZZ  ->  ( C ^ 2 )  e.  ZZ )
1614, 15syl 14 . . . . . . . . 9  |-  ( ph  ->  ( C ^ 2 )  e.  ZZ )
17 2sqlem8.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ZZ )
18 2sqlem8.d . . . . . . . . . . . 12  |-  D  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
1917, 5, 184sqlem5 12523 . . . . . . . . . . 11  |-  ( ph  ->  ( D  e.  ZZ  /\  ( ( B  -  D )  /  M
)  e.  ZZ ) )
2019simpld 112 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ZZ )
21 zsqcl 10684 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  ( D ^ 2 )  e.  ZZ )
2220, 21syl 14 . . . . . . . . 9  |-  ( ph  ->  ( D ^ 2 )  e.  ZZ )
2316, 22zaddcld 9446 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  ZZ )
24 zsqcl 10684 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
2511, 24syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 2 )  e.  ZZ )
2625, 16zsubcld 9447 . . . . . . . . . 10  |-  ( ph  ->  ( ( A ^
2 )  -  ( C ^ 2 ) )  e.  ZZ )
27 zsqcl 10684 . . . . . . . . . . . 12  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
2817, 27syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( B ^ 2 )  e.  ZZ )
2928, 22zsubcld 9447 . . . . . . . . . 10  |-  ( ph  ->  ( ( B ^
2 )  -  ( D ^ 2 ) )  e.  ZZ )
3011, 5, 124sqlem8 12526 . . . . . . . . . 10  |-  ( ph  ->  M  ||  ( ( A ^ 2 )  -  ( C ^
2 ) ) )
3117, 5, 184sqlem8 12526 . . . . . . . . . 10  |-  ( ph  ->  M  ||  ( ( B ^ 2 )  -  ( D ^
2 ) ) )
328, 26, 29, 30, 31dvds2addd 11975 . . . . . . . . 9  |-  ( ph  ->  M  ||  ( ( ( A ^ 2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) )
33 2sqlem8.4 . . . . . . . . . . 11  |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
3433oveq1d 5934 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  (
( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
3525zcnd 9443 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
3628zcnd 9443 . . . . . . . . . . 11  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
3716zcnd 9443 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
3822zcnd 9443 . . . . . . . . . . 11  |-  ( ph  ->  ( D ^ 2 )  e.  CC )
3935, 36, 37, 38addsub4d 8379 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) )
4034, 39eqtrd 2226 . . . . . . . . 9  |-  ( ph  ->  ( N  -  (
( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) )
4132, 40breqtrrd 4058 . . . . . . . 8  |-  ( ph  ->  M  ||  ( N  -  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
42 dvdssub2 11981 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  ZZ )  /\  M  ||  ( N  -  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )  ->  ( M  ||  N 
<->  M  ||  ( ( C ^ 2 )  +  ( D ^
2 ) ) ) )
438, 10, 23, 41, 42syl31anc 1252 . . . . . . 7  |-  ( ph  ->  ( M  ||  N  <->  M 
||  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
446, 43mpbid 147 . . . . . 6  |-  ( ph  ->  M  ||  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
45 2sqlem7.2 . . . . . . . . . . . 12  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
46 2sqlem9.5 . . . . . . . . . . . 12  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
47 2sqlem8.3 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
481, 45, 46, 6, 9, 2, 11, 17, 47, 33, 12, 182sqlem8a 15279 . . . . . . . . . . 11  |-  ( ph  ->  ( C  gcd  D
)  e.  NN )
4948nnzd 9441 . . . . . . . . . 10  |-  ( ph  ->  ( C  gcd  D
)  e.  ZZ )
50 zsqcl2 10691 . . . . . . . . . 10  |-  ( ( C  gcd  D )  e.  ZZ  ->  (
( C  gcd  D
) ^ 2 )  e.  NN0 )
5149, 50syl 14 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  NN0 )
5251nn0cnd 9298 . . . . . . . 8  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  CC )
53 2sqlem8.e . . . . . . . . . . 11  |-  E  =  ( C  /  ( C  gcd  D ) )
54 gcddvds 12103 . . . . . . . . . . . . . 14  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( ( C  gcd  D )  ||  C  /\  ( C  gcd  D ) 
||  D ) )
5514, 20, 54syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  gcd  D )  ||  C  /\  ( C  gcd  D ) 
||  D ) )
5655simpld 112 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  gcd  D
)  ||  C )
5748nnne0d 9029 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  gcd  D
)  =/=  0 )
58 dvdsval2 11936 . . . . . . . . . . . . 13  |-  ( ( ( C  gcd  D
)  e.  ZZ  /\  ( C  gcd  D )  =/=  0  /\  C  e.  ZZ )  ->  (
( C  gcd  D
)  ||  C  <->  ( C  /  ( C  gcd  D ) )  e.  ZZ ) )
5949, 57, 14, 58syl3anc 1249 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  ||  C  <->  ( C  /  ( C  gcd  D ) )  e.  ZZ ) )
6056, 59mpbid 147 . . . . . . . . . . 11  |-  ( ph  ->  ( C  /  ( C  gcd  D ) )  e.  ZZ )
6153, 60eqeltrid 2280 . . . . . . . . . 10  |-  ( ph  ->  E  e.  ZZ )
62 zsqcl2 10691 . . . . . . . . . 10  |-  ( E  e.  ZZ  ->  ( E ^ 2 )  e. 
NN0 )
6361, 62syl 14 . . . . . . . . 9  |-  ( ph  ->  ( E ^ 2 )  e.  NN0 )
6463nn0cnd 9298 . . . . . . . 8  |-  ( ph  ->  ( E ^ 2 )  e.  CC )
65 2sqlem8.f . . . . . . . . . . 11  |-  F  =  ( D  /  ( C  gcd  D ) )
6655simprd 114 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  gcd  D
)  ||  D )
67 dvdsval2 11936 . . . . . . . . . . . . 13  |-  ( ( ( C  gcd  D
)  e.  ZZ  /\  ( C  gcd  D )  =/=  0  /\  D  e.  ZZ )  ->  (
( C  gcd  D
)  ||  D  <->  ( D  /  ( C  gcd  D ) )  e.  ZZ ) )
6849, 57, 20, 67syl3anc 1249 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  ||  D  <->  ( D  /  ( C  gcd  D ) )  e.  ZZ ) )
6966, 68mpbid 147 . . . . . . . . . . 11  |-  ( ph  ->  ( D  /  ( C  gcd  D ) )  e.  ZZ )
7065, 69eqeltrid 2280 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ZZ )
71 zsqcl2 10691 . . . . . . . . . 10  |-  ( F  e.  ZZ  ->  ( F ^ 2 )  e. 
NN0 )
7270, 71syl 14 . . . . . . . . 9  |-  ( ph  ->  ( F ^ 2 )  e.  NN0 )
7372nn0cnd 9298 . . . . . . . 8  |-  ( ph  ->  ( F ^ 2 )  e.  CC )
7452, 64, 73adddid 8046 . . . . . . 7  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( ( ( C  gcd  D ) ^ 2 )  x.  ( E ^
2 ) )  +  ( ( ( C  gcd  D ) ^
2 )  x.  ( F ^ 2 ) ) ) )
7549zcnd 9443 . . . . . . . . . 10  |-  ( ph  ->  ( C  gcd  D
)  e.  CC )
7661zcnd 9443 . . . . . . . . . 10  |-  ( ph  ->  E  e.  CC )
7775, 76sqmuld 10759 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E ) ^ 2 )  =  ( ( ( C  gcd  D
) ^ 2 )  x.  ( E ^
2 ) ) )
7853oveq2i 5930 . . . . . . . . . . 11  |-  ( ( C  gcd  D )  x.  E )  =  ( ( C  gcd  D )  x.  ( C  /  ( C  gcd  D ) ) )
7914zcnd 9443 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  CC )
8048nnap0d 9030 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  gcd  D
) #  0 )
8179, 75, 80divcanap2d 8813 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  x.  ( C  /  ( C  gcd  D ) ) )  =  C )
8278, 81eqtrid 2238 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  x.  E )  =  C )
8382oveq1d 5934 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E ) ^ 2 )  =  ( C ^ 2 ) )
8477, 83eqtr3d 2228 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  ( E ^ 2 ) )  =  ( C ^
2 ) )
8570zcnd 9443 . . . . . . . . . 10  |-  ( ph  ->  F  e.  CC )
8675, 85sqmuld 10759 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  F ) ^ 2 )  =  ( ( ( C  gcd  D
) ^ 2 )  x.  ( F ^
2 ) ) )
8765oveq2i 5930 . . . . . . . . . . 11  |-  ( ( C  gcd  D )  x.  F )  =  ( ( C  gcd  D )  x.  ( D  /  ( C  gcd  D ) ) )
8820zcnd 9443 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  CC )
8988, 75, 80divcanap2d 8813 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  x.  ( D  /  ( C  gcd  D ) ) )  =  D )
9087, 89eqtrid 2238 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  x.  F )  =  D )
9190oveq1d 5934 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  F ) ^ 2 )  =  ( D ^ 2 ) )
9286, 91eqtr3d 2228 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  ( F ^ 2 ) )  =  ( D ^
2 ) )
9384, 92oveq12d 5937 . . . . . . 7  |-  ( ph  ->  ( ( ( ( C  gcd  D ) ^ 2 )  x.  ( E ^ 2 ) )  +  ( ( ( C  gcd  D ) ^ 2 )  x.  ( F ^
2 ) ) )  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
9474, 93eqtrd 2226 . . . . . 6  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
9544, 94breqtrrd 4058 . . . . 5  |-  ( ph  ->  M  ||  ( ( ( C  gcd  D
) ^ 2 )  x.  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
96 zsqcl 10684 . . . . . . . 8  |-  ( ( C  gcd  D )  e.  ZZ  ->  (
( C  gcd  D
) ^ 2 )  e.  ZZ )
9749, 96syl 14 . . . . . . 7  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  ZZ )
988, 97gcdcomd 12114 . . . . . 6  |-  ( ph  ->  ( M  gcd  (
( C  gcd  D
) ^ 2 ) )  =  ( ( ( C  gcd  D
) ^ 2 )  gcd  M ) )
9949, 8gcdcld 12108 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  e.  NN0 )
10099nn0zd 9440 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  e.  ZZ )
101 gcddvds 12103 . . . . . . . . . . . . . 14  |-  ( ( ( C  gcd  D
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  ( C  gcd  D )  /\  ( ( C  gcd  D )  gcd  M ) 
||  M ) )
10249, 8, 101syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  ( C  gcd  D )  /\  ( ( C  gcd  D )  gcd  M ) 
||  M ) )
103102simpld 112 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  ( C  gcd  D ) )
104100, 49, 14, 103, 56dvdstrd 11976 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  C )
10511, 14zsubcld 9447 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  -  C
)  e.  ZZ )
106102simprd 114 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  M )
10713simprd 114 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  -  C )  /  M
)  e.  ZZ )
1085nnne0d 9029 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  =/=  0 )
109 dvdsval2 11936 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  ( A  -  C )  e.  ZZ )  ->  ( M  ||  ( A  -  C )  <->  ( ( A  -  C )  /  M )  e.  ZZ ) )
1108, 108, 105, 109syl3anc 1249 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  ||  ( A  -  C )  <->  ( ( A  -  C
)  /  M )  e.  ZZ ) )
111107, 110mpbird 167 . . . . . . . . . . . . 13  |-  ( ph  ->  M  ||  ( A  -  C ) )
112100, 8, 105, 106, 111dvdstrd 11976 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  ( A  -  C ) )
113 dvdssub2 11981 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  gcd  D )  gcd 
M )  e.  ZZ  /\  A  e.  ZZ  /\  C  e.  ZZ )  /\  ( ( C  gcd  D )  gcd  M ) 
||  ( A  -  C ) )  -> 
( ( ( C  gcd  D )  gcd 
M )  ||  A  <->  ( ( C  gcd  D
)  gcd  M )  ||  C ) )
114100, 11, 14, 112, 113syl31anc 1252 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  A  <->  ( ( C  gcd  D
)  gcd  M )  ||  C ) )
115104, 114mpbird 167 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  A )
116100, 49, 20, 103, 66dvdstrd 11976 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  D )
11717, 20zsubcld 9447 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  -  D
)  e.  ZZ )
11819simprd 114 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  -  D )  /  M
)  e.  ZZ )
119 dvdsval2 11936 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  ( B  -  D )  e.  ZZ )  ->  ( M  ||  ( B  -  D )  <->  ( ( B  -  D )  /  M )  e.  ZZ ) )
1208, 108, 117, 119syl3anc 1249 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  ||  ( B  -  D )  <->  ( ( B  -  D
)  /  M )  e.  ZZ ) )
121118, 120mpbird 167 . . . . . . . . . . . . 13  |-  ( ph  ->  M  ||  ( B  -  D ) )
122100, 8, 117, 106, 121dvdstrd 11976 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  ( B  -  D ) )
123 dvdssub2 11981 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  gcd  D )  gcd 
M )  e.  ZZ  /\  B  e.  ZZ  /\  D  e.  ZZ )  /\  ( ( C  gcd  D )  gcd  M ) 
||  ( B  -  D ) )  -> 
( ( ( C  gcd  D )  gcd 
M )  ||  B  <->  ( ( C  gcd  D
)  gcd  M )  ||  D ) )
124100, 17, 20, 122, 123syl31anc 1252 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  B  <->  ( ( C  gcd  D
)  gcd  M )  ||  D ) )
125116, 124mpbird 167 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  B )
126 1ne0 9052 . . . . . . . . . . . . . . 15  |-  1  =/=  0
127126a1i 9 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  =/=  0 )
12847, 127eqnetrd 2388 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  gcd  B
)  =/=  0 )
129128neneqd 2385 . . . . . . . . . . . 12  |-  ( ph  ->  -.  ( A  gcd  B )  =  0 )
130 gcdeq0 12117 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
13111, 17, 130syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
132129, 131mtbid 673 . . . . . . . . . . 11  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
133 dvdslegcd 12104 . . . . . . . . . . 11  |-  ( ( ( ( ( C  gcd  D )  gcd 
M )  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( ( ( C  gcd  D )  gcd  M )  ||  A  /\  ( ( C  gcd  D )  gcd 
M )  ||  B
)  ->  ( ( C  gcd  D )  gcd 
M )  <_  ( A  gcd  B ) ) )
134100, 11, 17, 132, 133syl31anc 1252 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  A  /\  ( ( C  gcd  D )  gcd 
M )  ||  B
)  ->  ( ( C  gcd  D )  gcd 
M )  <_  ( A  gcd  B ) ) )
135115, 125, 134mp2and 433 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  <_  ( A  gcd  B ) )
136135, 47breqtrd 4056 . . . . . . . 8  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  <_  1 )
137 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( C  gcd  D
)  =  0  /\  M  =  0 )  ->  M  =  0 )
138137necon3ai 2413 . . . . . . . . . . 11  |-  ( M  =/=  0  ->  -.  ( ( C  gcd  D )  =  0  /\  M  =  0 ) )
139108, 138syl 14 . . . . . . . . . 10  |-  ( ph  ->  -.  ( ( C  gcd  D )  =  0  /\  M  =  0 ) )
140 gcdn0cl 12102 . . . . . . . . . 10  |-  ( ( ( ( C  gcd  D )  e.  ZZ  /\  M  e.  ZZ )  /\  -.  ( ( C  gcd  D )  =  0  /\  M  =  0 ) )  -> 
( ( C  gcd  D )  gcd  M )  e.  NN )
14149, 8, 139, 140syl21anc 1248 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  e.  NN )
142 nnle1eq1 9008 . . . . . . . . 9  |-  ( ( ( C  gcd  D
)  gcd  M )  e.  NN  ->  ( (
( C  gcd  D
)  gcd  M )  <_  1  <->  ( ( C  gcd  D )  gcd 
M )  =  1 ) )
143141, 142syl 14 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  <_  1  <->  ( ( C  gcd  D
)  gcd  M )  =  1 ) )
144136, 143mpbid 147 . . . . . . 7  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  =  1 )
145 2nn 9146 . . . . . . . . 9  |-  2  e.  NN
146145a1i 9 . . . . . . . 8  |-  ( ph  ->  2  e.  NN )
147 rplpwr 12167 . . . . . . . 8  |-  ( ( ( C  gcd  D
)  e.  NN  /\  M  e.  NN  /\  2  e.  NN )  ->  (
( ( C  gcd  D )  gcd  M )  =  1  ->  (
( ( C  gcd  D ) ^ 2 )  gcd  M )  =  1 ) )
14848, 5, 146, 147syl3anc 1249 . . . . . . 7  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  =  1  ->  ( ( ( C  gcd  D ) ^ 2 )  gcd 
M )  =  1 ) )
149144, 148mpd 13 . . . . . 6  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  gcd  M
)  =  1 )
15098, 149eqtrd 2226 . . . . 5  |-  ( ph  ->  ( M  gcd  (
( C  gcd  D
) ^ 2 ) )  =  1 )
15163, 72nn0addcld 9300 . . . . . . 7  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  NN0 )
152151nn0zd 9440 . . . . . 6  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  ZZ )
153 coprmdvds 12233 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( ( C  gcd  D ) ^ 2 )  e.  ZZ  /\  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  ZZ )  -> 
( ( M  ||  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  /\  ( M  gcd  ( ( C  gcd  D ) ^
2 ) )  =  1 )  ->  M  ||  ( ( E ^
2 )  +  ( F ^ 2 ) ) ) )
1548, 97, 152, 153syl3anc 1249 . . . . 5  |-  ( ph  ->  ( ( M  ||  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  /\  ( M  gcd  ( ( C  gcd  D ) ^
2 ) )  =  1 )  ->  M  ||  ( ( E ^
2 )  +  ( F ^ 2 ) ) ) )
15595, 150, 154mp2and 433 . . . 4  |-  ( ph  ->  M  ||  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
156 dvdsval2 11936 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  ZZ )  -> 
( M  ||  (
( E ^ 2 )  +  ( F ^ 2 ) )  <-> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ ) )
1578, 108, 152, 156syl3anc 1249 . . . 4  |-  ( ph  ->  ( M  ||  (
( E ^ 2 )  +  ( F ^ 2 ) )  <-> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ ) )
158155, 157mpbid 147 . . 3  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ )
15963nn0red 9297 . . . . 5  |-  ( ph  ->  ( E ^ 2 )  e.  RR )
16072nn0red 9297 . . . . 5  |-  ( ph  ->  ( F ^ 2 )  e.  RR )
161159, 160readdcld 8051 . . . 4  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  RR )
1625nnred 8997 . . . 4  |-  ( ph  ->  M  e.  RR )
1631, 452sqlem7 15278 . . . . . . 7  |-  Y  C_  ( S  i^i  NN )
164 inss2 3381 . . . . . . 7  |-  ( S  i^i  NN )  C_  NN
165163, 164sstri 3189 . . . . . 6  |-  Y  C_  NN
16661, 70gcdcld 12108 . . . . . . . . . 10  |-  ( ph  ->  ( E  gcd  F
)  e.  NN0 )
167166nn0cnd 9298 . . . . . . . . 9  |-  ( ph  ->  ( E  gcd  F
)  e.  CC )
168 1cnd 8037 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
16975mulridd 8038 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  x.  1 )  =  ( C  gcd  D ) )
17082, 90oveq12d 5937 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E )  gcd  (
( C  gcd  D
)  x.  F ) )  =  ( C  gcd  D ) )
17114, 20gcdcld 12108 . . . . . . . . . . 11  |-  ( ph  ->  ( C  gcd  D
)  e.  NN0 )
172 mulgcd 12156 . . . . . . . . . . 11  |-  ( ( ( C  gcd  D
)  e.  NN0  /\  E  e.  ZZ  /\  F  e.  ZZ )  ->  (
( ( C  gcd  D )  x.  E )  gcd  ( ( C  gcd  D )  x.  F ) )  =  ( ( C  gcd  D )  x.  ( E  gcd  F ) ) )
173171, 61, 70, 172syl3anc 1249 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E )  gcd  (
( C  gcd  D
)  x.  F ) )  =  ( ( C  gcd  D )  x.  ( E  gcd  F ) ) )
174169, 170, 1733eqtr2rd 2233 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D )  x.  ( E  gcd  F ) )  =  ( ( C  gcd  D )  x.  1 ) )
175167, 168, 75, 80, 174mulcanapad 8684 . . . . . . . 8  |-  ( ph  ->  ( E  gcd  F
)  =  1 )
176 eqidd 2194 . . . . . . . 8  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
177 oveq1 5926 . . . . . . . . . . 11  |-  ( x  =  E  ->  (
x  gcd  y )  =  ( E  gcd  y ) )
178177eqeq1d 2202 . . . . . . . . . 10  |-  ( x  =  E  ->  (
( x  gcd  y
)  =  1  <->  ( E  gcd  y )  =  1 ) )
179 oveq1 5926 . . . . . . . . . . . 12  |-  ( x  =  E  ->  (
x ^ 2 )  =  ( E ^
2 ) )
180179oveq1d 5934 . . . . . . . . . . 11  |-  ( x  =  E  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^ 2 ) ) )
181180eqeq2d 2205 . . . . . . . . . 10  |-  ( x  =  E  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^ 2 ) ) ) )
182178, 181anbi12d 473 . . . . . . . . 9  |-  ( x  =  E  ->  (
( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( E  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( E ^
2 )  +  ( y ^ 2 ) ) ) ) )
183 oveq2 5927 . . . . . . . . . . 11  |-  ( y  =  F  ->  ( E  gcd  y )  =  ( E  gcd  F
) )
184183eqeq1d 2202 . . . . . . . . . 10  |-  ( y  =  F  ->  (
( E  gcd  y
)  =  1  <->  ( E  gcd  F )  =  1 ) )
185 oveq1 5926 . . . . . . . . . . . 12  |-  ( y  =  F  ->  (
y ^ 2 )  =  ( F ^
2 ) )
186185oveq2d 5935 . . . . . . . . . . 11  |-  ( y  =  F  ->  (
( E ^ 2 )  +  ( y ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
187186eqeq2d 2205 . . . . . . . . . 10  |-  ( y  =  F  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^
2 ) )  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
188184, 187anbi12d 473 . . . . . . . . 9  |-  ( y  =  F  ->  (
( ( E  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( E  gcd  F )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( E ^
2 )  +  ( F ^ 2 ) ) ) ) )
189182, 188rspc2ev 2880 . . . . . . . 8  |-  ( ( E  e.  ZZ  /\  F  e.  ZZ  /\  (
( E  gcd  F
)  =  1  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
19061, 70, 175, 176, 189syl112anc 1253 . . . . . . 7  |-  ( ph  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) )
191 eqeq1 2200 . . . . . . . . . . 11  |-  ( z  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
z  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
192191anbi2d 464 . . . . . . . . . 10  |-  ( z  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) ) )
1931922rexbidv 2519 . . . . . . . . 9  |-  ( z  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) ) )
194193, 45elab2g 2908 . . . . . . . 8  |-  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  e.  NN0  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  e.  Y  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) ) )
195151, 194syl 14 . . . . . . 7  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  e.  Y  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) ) )
196190, 195mpbird 167 . . . . . 6  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  Y )
197165, 196sselid 3178 . . . . 5  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  NN )
198197nngt0d 9028 . . . 4  |-  ( ph  ->  0  <  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
1995nngt0d 9028 . . . 4  |-  ( ph  ->  0  <  M )
200161, 162, 198, 199divgt0d 8956 . . 3  |-  ( ph  ->  0  <  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M ) )
201 elnnz 9330 . . 3  |-  ( ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  NN  <->  ( (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  ZZ  /\  0  <  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) ) )
202158, 200, 201sylanbrc 417 . 2  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  NN )
203 prmnn 12251 . . . . . . . 8  |-  ( p  e.  Prime  ->  p  e.  NN )
204203ad2antrl 490 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  NN )
205204nnred 8997 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  RR )
206158adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  ZZ )
207206zred 9442 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  RR )
208 peano2zm 9358 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
2098, 208syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
210209zred 9442 . . . . . . . . 9  |-  ( ph  ->  ( M  -  1 )  e.  RR )
211210adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  ( M  -  1 )  e.  RR )
212 simprr 531 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) )
213 prmz 12252 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e.  ZZ )
214213ad2antrl 490 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  ZZ )
215202adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  NN )
216 dvdsle 11989 . . . . . . . . . 10  |-  ( ( p  e.  ZZ  /\  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  NN )  ->  ( p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ->  p  <_  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )
217214, 215, 216syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
p  ||  ( (
( E ^ 2 )  +  ( F ^ 2 ) )  /  M )  ->  p  <_  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M ) ) )
218212, 217mpd 13 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  <_  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) )
219 zsqcl 10684 . . . . . . . . . . . . . . . 16  |-  ( M  e.  ZZ  ->  ( M ^ 2 )  e.  ZZ )
2208, 219syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ^ 2 )  e.  ZZ )
221220zred 9442 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ^ 2 )  e.  RR )
222221rehalfcld 9232 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  RR )
22316zred 9442 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C ^ 2 )  e.  RR )
22422zred 9442 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D ^ 2 )  e.  RR )
225223, 224readdcld 8051 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  RR )
226 1red 8036 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  e.  RR )
22748nnsqcld 10768 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  NN )
228227nnred 8997 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  RR )
229151nn0ge0d 9299 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <_  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
230227nnge1d 9027 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  <_  ( ( C  gcd  D ) ^
2 ) )
231226, 228, 161, 229, 230lemul1ad 8960 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  <_  ( (
( C  gcd  D
) ^ 2 )  x.  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
232151nn0cnd 9298 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  CC )
233232mulid2d 8040 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
234231, 233, 943brtr3d 4061 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
235222rehalfcld 9232 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  RR )
23611, 5, 124sqlem7 12525 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( C ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
23717, 5, 184sqlem7 12525 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( D ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
238223, 224, 235, 235, 236, 237le2addd 8584 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  +  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
239222recnd 8050 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  CC )
2402392halvesd 9231 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  +  ( ( ( M ^
2 )  /  2
)  /  2 ) )  =  ( ( M ^ 2 )  /  2 ) )
241238, 240breqtrd 4056 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
242161, 225, 222, 234, 241letrd 8145 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
2435nnsqcld 10768 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ^ 2 )  e.  NN )
244243nnrpd 9763 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ^ 2 )  e.  RR+ )
245 rphalflt 9752 . . . . . . . . . . . . . 14  |-  ( ( M ^ 2 )  e.  RR+  ->  ( ( M ^ 2 )  /  2 )  < 
( M ^ 2 ) )
246244, 245syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  <  ( M ^ 2 ) )
247161, 222, 221, 242, 246lelttrd 8146 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <  ( M ^ 2 ) )
2488zcnd 9443 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  CC )
249248sqvald 10744 . . . . . . . . . . . 12  |-  ( ph  ->  ( M ^ 2 )  =  ( M  x.  M ) )
250247, 249breqtrd 4056 . . . . . . . . . . 11  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <  ( M  x.  M ) )
251 ltdivmul 8897 . . . . . . . . . . . 12  |-  ( ( ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  RR  /\  M  e.  RR  /\  ( M  e.  RR  /\  0  <  M ) )  -> 
( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  <  ( M  x.  M ) ) )
252161, 162, 162, 199, 251syl112anc 1253 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  <  ( M  x.  M ) ) )
253250, 252mpbird 167 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  <  M )
254 zltlem1 9377 . . . . . . . . . . 11  |-  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  <_  ( M  - 
1 ) ) )
255158, 8, 254syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  <_  ( M  - 
1 ) ) )
256253, 255mpbid 147 . . . . . . . . 9  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  <_  ( M  -  1 ) )
257256adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  <_  ( M  - 
1 ) )
258205, 207, 211, 218, 257letrd 8145 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  <_  ( M  -  1 ) )
259209adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  ( M  -  1 )  e.  ZZ )
260 fznn 10158 . . . . . . . 8  |-  ( ( M  -  1 )  e.  ZZ  ->  (
p  e.  ( 1 ... ( M  - 
1 ) )  <->  ( p  e.  NN  /\  p  <_ 
( M  -  1 ) ) ) )
261259, 260syl 14 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
p  e.  ( 1 ... ( M  - 
1 ) )  <->  ( p  e.  NN  /\  p  <_ 
( M  -  1 ) ) ) )
262204, 258, 261mpbir2and 946 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  ( 1 ... ( M  -  1 ) ) )
263196adantr 276 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  Y )
264262, 263jca 306 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
p  e.  ( 1 ... ( M  - 
1 ) )  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  Y ) )
26546adantr 276 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) )
266152adantr 276 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  ZZ )
267 dvdsmul2 11960 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ )  ->  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  ||  ( M  x.  ( (
( E ^ 2 )  +  ( F ^ 2 ) )  /  M ) ) )
2688, 158, 267syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ||  ( M  x.  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) ) )
2695nnap0d 9030 . . . . . . . . 9  |-  ( ph  ->  M #  0 )
270232, 248, 269divcanap2d 8813 . . . . . . . 8  |-  ( ph  ->  ( M  x.  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
271268, 270breqtrd 4056 . . . . . . 7  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ||  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
272271adantr 276 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) 
||  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
273214, 206, 266, 212, 272dvdstrd 11976 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  ||  ( ( E ^
2 )  +  ( F ^ 2 ) ) )
274 breq1 4033 . . . . . . 7  |-  ( b  =  p  ->  (
b  ||  a  <->  p  ||  a
) )
275 eleq1w 2254 . . . . . . 7  |-  ( b  =  p  ->  (
b  e.  S  <->  p  e.  S ) )
276274, 275imbi12d 234 . . . . . 6  |-  ( b  =  p  ->  (
( b  ||  a  ->  b  e.  S )  <-> 
( p  ||  a  ->  p  e.  S ) ) )
277 breq2 4034 . . . . . . 7  |-  ( a  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
p  ||  a  <->  p  ||  (
( E ^ 2 )  +  ( F ^ 2 ) ) ) )
278277imbi1d 231 . . . . . 6  |-  ( a  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
( p  ||  a  ->  p  e.  S )  <-> 
( p  ||  (
( E ^ 2 )  +  ( F ^ 2 ) )  ->  p  e.  S
) ) )
279276, 278rspc2v 2878 . . . . 5  |-  ( ( p  e.  ( 1 ... ( M  - 
1 ) )  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  Y )  ->  ( A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  ->  ( p  ||  ( ( E ^
2 )  +  ( F ^ 2 ) )  ->  p  e.  S ) ) )
280264, 265, 273, 279syl3c 63 . . . 4  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  S )
281280expr 375 . . 3  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ->  p  e.  S ) )
282281ralrimiva 2567 . 2  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M )  ->  p  e.  S )
)
283 inss1 3380 . . . . 5  |-  ( S  i^i  NN )  C_  S
284163, 283sstri 3189 . . . 4  |-  Y  C_  S
285284, 196sselid 3178 . . 3  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  S )
286270, 285eqeltrd 2270 . 2  |-  ( ph  ->  ( M  x.  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) )  e.  S )
2871, 5, 202, 282, 2862sqlem6 15277 1  |-  ( ph  ->  M  e.  S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179    =/= wne 2364   A.wral 2472   E.wrex 2473    i^i cin 3153   class class class wbr 4030    |-> cmpt 4091   ran crn 4661   ` cfv 5255  (class class class)co 5919   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056    <_ cle 8057    - cmin 8192    / cdiv 8693   NNcn 8984   2c2 9035   NN0cn0 9243   ZZcz 9320   ZZ>=cuz 9595   RR+crp 9722   ...cfz 10077    mod cmo 10396   ^cexp 10612   abscabs 11144    || cdvds 11933    gcd cgcd 12082   Primecprime 12248   ZZ[_i]cgz 12510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-2o 6472  df-er 6589  df-en 6797  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-dvds 11934  df-gcd 12083  df-prm 12249  df-gz 12511
This theorem is referenced by:  2sqlem9  15281
  Copyright terms: Public domain W3C validator