ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashprg Unicode version

Theorem hashprg 10682
Description: The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
hashprg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  =/=  B  <->  ( `  { A ,  B } )  =  2 ) )

Proof of Theorem hashprg
StepHypRef Expression
1 simplr 520 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  A  =/=  B )  ->  B  e.  W )
2 snfig 6759 . . . . . 6  |-  ( A  e.  V  ->  { A }  e.  Fin )
32ad2antrr 480 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  A  =/=  B )  ->  { A }  e.  Fin )
4 elsni 3578 . . . . . . . 8  |-  ( B  e.  { A }  ->  B  =  A )
54eqcomd 2163 . . . . . . 7  |-  ( B  e.  { A }  ->  A  =  B )
65necon3ai 2376 . . . . . 6  |-  ( A  =/=  B  ->  -.  B  e.  { A } )
76adantl 275 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  A  =/=  B )  ->  -.  B  e.  { A } )
8 hashunsng 10681 . . . . . 6  |-  ( B  e.  W  ->  (
( { A }  e.  Fin  /\  -.  B  e.  { A } )  ->  ( `  ( { A }  u.  { B } ) )  =  ( ( `  { A } )  +  1 ) ) )
98imp 123 . . . . 5  |-  ( ( B  e.  W  /\  ( { A }  e.  Fin  /\  -.  B  e. 
{ A } ) )  ->  ( `  ( { A }  u.  { B } ) )  =  ( ( `  { A } )  +  1 ) )
101, 3, 7, 9syl12anc 1218 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  A  =/=  B )  ->  ( `  ( { A }  u.  { B } ) )  =  ( ( `  { A } )  +  1 ) )
11 hashsng 10672 . . . . . . 7  |-  ( A  e.  V  ->  ( `  { A } )  =  1 )
1211adantr 274 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( `  { A } )  =  1 )
1312adantr 274 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  A  =/=  B )  ->  ( `  { A } )  =  1 )
1413oveq1d 5839 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  A  =/=  B )  ->  ( ( `  { A } )  +  1 )  =  ( 1  +  1 ) )
1510, 14eqtrd 2190 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  A  =/=  B )  ->  ( `  ( { A }  u.  { B } ) )  =  ( 1  +  1 ) )
16 df-pr 3567 . . . 4  |-  { A ,  B }  =  ( { A }  u.  { B } )
1716fveq2i 5471 . . 3  |-  ( `  { A ,  B }
)  =  ( `  ( { A }  u.  { B } ) )
18 df-2 8892 . . 3  |-  2  =  ( 1  +  1 )
1915, 17, 183eqtr4g 2215 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  A  =/=  B )  ->  ( `  { A ,  B }
)  =  2 )
20 1ne2 9039 . . . . . . 7  |-  1  =/=  2
2120a1i 9 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  1  =/=  2 )
2212, 21eqnetrd 2351 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( `  { A } )  =/=  2
)
23 dfsn2 3574 . . . . . . . 8  |-  { A }  =  { A ,  A }
24 preq2 3637 . . . . . . . 8  |-  ( A  =  B  ->  { A ,  A }  =  { A ,  B }
)
2523, 24eqtr2id 2203 . . . . . . 7  |-  ( A  =  B  ->  { A ,  B }  =  { A } )
2625fveq2d 5472 . . . . . 6  |-  ( A  =  B  ->  ( `  { A ,  B } )  =  ( `  { A } ) )
2726neeq1d 2345 . . . . 5  |-  ( A  =  B  ->  (
( `  { A ,  B } )  =/=  2  <->  ( `  { A } )  =/=  2 ) )
2822, 27syl5ibrcom 156 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  =  B  ->  ( `  { A ,  B } )  =/=  2 ) )
2928necon2d 2386 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( `  { A ,  B }
)  =  2  ->  A  =/=  B ) )
3029imp 123 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( `  { A ,  B }
)  =  2 )  ->  A  =/=  B
)
3119, 30impbida 586 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  =/=  B  <->  ( `  { A ,  B } )  =  2 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128    =/= wne 2327    u. cun 3100   {csn 3560   {cpr 3561   ` cfv 5170  (class class class)co 5824   Fincfn 6685   1c1 7733    + caddc 7735   2c2 8884  ♯chash 10649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-addcom 7832  ax-addass 7834  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-0id 7840  ax-rnegex 7841  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-frec 6338  df-1o 6363  df-oadd 6367  df-er 6480  df-en 6686  df-dom 6687  df-fin 6688  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-inn 8834  df-2 8892  df-n0 9091  df-z 9168  df-uz 9440  df-fz 9913  df-ihash 10650
This theorem is referenced by:  prhash2ex  10683  fiprsshashgt1  10691
  Copyright terms: Public domain W3C validator