ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pockthlem Unicode version

Theorem pockthlem 12679
Description: Lemma for pockthg 12680. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthg.1  |-  ( ph  ->  A  e.  NN )
pockthg.2  |-  ( ph  ->  B  e.  NN )
pockthg.3  |-  ( ph  ->  B  <  A )
pockthg.4  |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1 ) )
pockthlem.5  |-  ( ph  ->  P  e.  Prime )
pockthlem.6  |-  ( ph  ->  P  ||  N )
pockthlem.7  |-  ( ph  ->  Q  e.  Prime )
pockthlem.8  |-  ( ph  ->  ( Q  pCnt  A
)  e.  NN )
pockthlem.9  |-  ( ph  ->  C  e.  ZZ )
pockthlem.10  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  mod  N
)  =  1 )
pockthlem.11  |-  ( ph  ->  ( ( ( C ^ ( ( N  -  1 )  /  Q ) )  - 
1 )  gcd  N
)  =  1 )
Assertion
Ref Expression
pockthlem  |-  ( ph  ->  ( Q  pCnt  A
)  <_  ( Q  pCnt  ( P  -  1 ) ) )

Proof of Theorem pockthlem
StepHypRef Expression
1 pockthlem.7 . . . . . 6  |-  ( ph  ->  Q  e.  Prime )
2 prmnn 12432 . . . . . 6  |-  ( Q  e.  Prime  ->  Q  e.  NN )
31, 2syl 14 . . . . 5  |-  ( ph  ->  Q  e.  NN )
4 pockthlem.8 . . . . . 6  |-  ( ph  ->  ( Q  pCnt  A
)  e.  NN )
54nnnn0d 9348 . . . . 5  |-  ( ph  ->  ( Q  pCnt  A
)  e.  NN0 )
63, 5nnexpcld 10840 . . . 4  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) )  e.  NN )
76nnzd 9494 . . 3  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) )  e.  ZZ )
8 pockthlem.5 . . . . . 6  |-  ( ph  ->  P  e.  Prime )
9 prmnn 12432 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
108, 9syl 14 . . . . 5  |-  ( ph  ->  P  e.  NN )
11 pockthlem.9 . . . . 5  |-  ( ph  ->  C  e.  ZZ )
1210nnzd 9494 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ZZ )
13 gcddvds 12284 . . . . . . . . . 10  |-  ( ( C  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( C  gcd  P )  ||  C  /\  ( C  gcd  P ) 
||  P ) )
1411, 12, 13syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  P )  ||  C  /\  ( C  gcd  P ) 
||  P ) )
1514simpld 112 . . . . . . . 8  |-  ( ph  ->  ( C  gcd  P
)  ||  C )
1611, 12gcdcld 12289 . . . . . . . . . 10  |-  ( ph  ->  ( C  gcd  P
)  e.  NN0 )
1716nn0zd 9493 . . . . . . . . 9  |-  ( ph  ->  ( C  gcd  P
)  e.  ZZ )
18 pockthg.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1 ) )
19 pockthg.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  NN )
20 pockthg.2 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  NN )
2119, 20nnmulcld 9085 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A  x.  B
)  e.  NN )
22 nnuz 9684 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
2321, 22eleqtrdi 2298 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  x.  B
)  e.  ( ZZ>= ` 
1 ) )
24 eluzp1p1 9674 . . . . . . . . . . . . . . 15  |-  ( ( A  x.  B )  e.  ( ZZ>= `  1
)  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
2523, 24syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
2618, 25eqeltrd 2282 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ( ZZ>= `  ( 1  +  1 ) ) )
27 df-2 9095 . . . . . . . . . . . . . 14  |-  2  =  ( 1  +  1 )
2827fveq2i 5579 . . . . . . . . . . . . 13  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
2926, 28eleqtrrdi 2299 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
30 eluz2b2 9724 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
3129, 30sylib 122 . . . . . . . . . . 11  |-  ( ph  ->  ( N  e.  NN  /\  1  <  N ) )
3231simpld 112 . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN )
3332nnzd 9494 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
3414simprd 114 . . . . . . . . 9  |-  ( ph  ->  ( C  gcd  P
)  ||  P )
35 pockthlem.6 . . . . . . . . 9  |-  ( ph  ->  P  ||  N )
3617, 12, 33, 34, 35dvdstrd 12141 . . . . . . . 8  |-  ( ph  ->  ( C  gcd  P
)  ||  N )
3732nnne0d 9081 . . . . . . . . . 10  |-  ( ph  ->  N  =/=  0 )
38 simpr 110 . . . . . . . . . . 11  |-  ( ( C  =  0  /\  N  =  0 )  ->  N  =  0 )
3938necon3ai 2425 . . . . . . . . . 10  |-  ( N  =/=  0  ->  -.  ( C  =  0  /\  N  =  0
) )
4037, 39syl 14 . . . . . . . . 9  |-  ( ph  ->  -.  ( C  =  0  /\  N  =  0 ) )
41 dvdslegcd 12285 . . . . . . . . 9  |-  ( ( ( ( C  gcd  P )  e.  ZZ  /\  C  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( C  =  0  /\  N  =  0
) )  ->  (
( ( C  gcd  P )  ||  C  /\  ( C  gcd  P ) 
||  N )  -> 
( C  gcd  P
)  <_  ( C  gcd  N ) ) )
4217, 11, 33, 40, 41syl31anc 1253 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  gcd  P )  ||  C  /\  ( C  gcd  P )  ||  N )  ->  ( C  gcd  P )  <_  ( C  gcd  N ) ) )
4315, 36, 42mp2and 433 . . . . . . 7  |-  ( ph  ->  ( C  gcd  P
)  <_  ( C  gcd  N ) )
44 pockthlem.10 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  mod  N
)  =  1 )
4544oveq1d 5959 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C ^ ( N  - 
1 ) )  mod 
N )  gcd  N
)  =  ( 1  gcd  N ) )
46 1z 9398 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
47 eluzp1m1 9672 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  ZZ  /\  N  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( N  -  1 )  e.  ( ZZ>= ` 
1 ) )
4846, 26, 47sylancr 414 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  -  1 )  e.  ( ZZ>= ` 
1 ) )
4948, 22eleqtrrdi 2299 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  -  1 )  e.  NN )
5049nnnn0d 9348 . . . . . . . . . . 11  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
51 zexpcl 10699 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  ( N  -  1
)  e.  NN0 )  ->  ( C ^ ( N  -  1 ) )  e.  ZZ )
5211, 50, 51syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( C ^ ( N  -  1 ) )  e.  ZZ )
53 modgcd 12312 . . . . . . . . . 10  |-  ( ( ( C ^ ( N  -  1 ) )  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( C ^ ( N  - 
1 ) )  mod 
N )  gcd  N
)  =  ( ( C ^ ( N  -  1 ) )  gcd  N ) )
5452, 32, 53syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C ^ ( N  - 
1 ) )  mod 
N )  gcd  N
)  =  ( ( C ^ ( N  -  1 ) )  gcd  N ) )
55 gcdcom 12294 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  gcd  N
)  =  ( N  gcd  1 ) )
5646, 33, 55sylancr 414 . . . . . . . . . 10  |-  ( ph  ->  ( 1  gcd  N
)  =  ( N  gcd  1 ) )
57 gcd1 12308 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N  gcd  1 )  =  1 )
5833, 57syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( N  gcd  1
)  =  1 )
5956, 58eqtrd 2238 . . . . . . . . 9  |-  ( ph  ->  ( 1  gcd  N
)  =  1 )
6045, 54, 593eqtr3d 2246 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  gcd  N
)  =  1 )
61 rpexp 12475 . . . . . . . . 9  |-  ( ( C  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  1 )  e.  NN )  -> 
( ( ( C ^ ( N  - 
1 ) )  gcd 
N )  =  1  <-> 
( C  gcd  N
)  =  1 ) )
6211, 33, 49, 61syl3anc 1250 . . . . . . . 8  |-  ( ph  ->  ( ( ( C ^ ( N  - 
1 ) )  gcd 
N )  =  1  <-> 
( C  gcd  N
)  =  1 ) )
6360, 62mpbid 147 . . . . . . 7  |-  ( ph  ->  ( C  gcd  N
)  =  1 )
6443, 63breqtrd 4070 . . . . . 6  |-  ( ph  ->  ( C  gcd  P
)  <_  1 )
6510nnne0d 9081 . . . . . . . . 9  |-  ( ph  ->  P  =/=  0 )
66 simpr 110 . . . . . . . . . 10  |-  ( ( C  =  0  /\  P  =  0 )  ->  P  =  0 )
6766necon3ai 2425 . . . . . . . . 9  |-  ( P  =/=  0  ->  -.  ( C  =  0  /\  P  =  0
) )
6865, 67syl 14 . . . . . . . 8  |-  ( ph  ->  -.  ( C  =  0  /\  P  =  0 ) )
69 gcdn0cl 12283 . . . . . . . 8  |-  ( ( ( C  e.  ZZ  /\  P  e.  ZZ )  /\  -.  ( C  =  0  /\  P  =  0 ) )  ->  ( C  gcd  P )  e.  NN )
7011, 12, 68, 69syl21anc 1249 . . . . . . 7  |-  ( ph  ->  ( C  gcd  P
)  e.  NN )
71 nnle1eq1 9060 . . . . . . 7  |-  ( ( C  gcd  P )  e.  NN  ->  (
( C  gcd  P
)  <_  1  <->  ( C  gcd  P )  =  1 ) )
7270, 71syl 14 . . . . . 6  |-  ( ph  ->  ( ( C  gcd  P )  <_  1  <->  ( C  gcd  P )  =  1 ) )
7364, 72mpbid 147 . . . . 5  |-  ( ph  ->  ( C  gcd  P
)  =  1 )
74 odzcl 12566 . . . . 5  |-  ( ( P  e.  NN  /\  C  e.  ZZ  /\  ( C  gcd  P )  =  1 )  ->  (
( odZ `  P ) `  C
)  e.  NN )
7510, 11, 73, 74syl3anc 1250 . . . 4  |-  ( ph  ->  ( ( odZ `  P ) `  C
)  e.  NN )
7675nnzd 9494 . . 3  |-  ( ph  ->  ( ( odZ `  P ) `  C
)  e.  ZZ )
77 prmuz2 12453 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
788, 77syl 14 . . . . . . 7  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
7978, 28eleqtrdi 2298 . . . . . 6  |-  ( ph  ->  P  e.  ( ZZ>= `  ( 1  +  1 ) ) )
80 eluzp1m1 9672 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  P  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( P  -  1 )  e.  ( ZZ>= ` 
1 ) )
8146, 79, 80sylancr 414 . . . . 5  |-  ( ph  ->  ( P  -  1 )  e.  ( ZZ>= ` 
1 ) )
8281, 22eleqtrrdi 2299 . . . 4  |-  ( ph  ->  ( P  -  1 )  e.  NN )
8382nnzd 9494 . . 3  |-  ( ph  ->  ( P  -  1 )  e.  ZZ )
8419nnzd 9494 . . . . . 6  |-  ( ph  ->  A  e.  ZZ )
8549nnzd 9494 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
86 pcdvds 12638 . . . . . . 7  |-  ( ( Q  e.  Prime  /\  A  e.  NN )  ->  ( Q ^ ( Q  pCnt  A ) )  ||  A
)
871, 19, 86syl2anc 411 . . . . . 6  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) ) 
||  A )
8820nnzd 9494 . . . . . . . 8  |-  ( ph  ->  B  e.  ZZ )
89 dvdsmul1 12124 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  ||  ( A  x.  B ) )
9084, 88, 89syl2anc 411 . . . . . . 7  |-  ( ph  ->  A  ||  ( A  x.  B ) )
9118oveq1d 5959 . . . . . . . 8  |-  ( ph  ->  ( N  -  1 )  =  ( ( ( A  x.  B
)  +  1 )  -  1 ) )
9221nncnd 9050 . . . . . . . . 9  |-  ( ph  ->  ( A  x.  B
)  e.  CC )
93 ax-1cn 8018 . . . . . . . . 9  |-  1  e.  CC
94 pncan 8278 . . . . . . . . 9  |-  ( ( ( A  x.  B
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( A  x.  B )  +  1 )  -  1 )  =  ( A  x.  B ) )
9592, 93, 94sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  x.  B )  +  1 )  -  1 )  =  ( A  x.  B ) )
9691, 95eqtrd 2238 . . . . . . 7  |-  ( ph  ->  ( N  -  1 )  =  ( A  x.  B ) )
9790, 96breqtrrd 4072 . . . . . 6  |-  ( ph  ->  A  ||  ( N  -  1 ) )
987, 84, 85, 87, 97dvdstrd 12141 . . . . 5  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) ) 
||  ( N  - 
1 ) )
996nnne0d 9081 . . . . . 6  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) )  =/=  0 )
100 dvdsval2 12101 . . . . . 6  |-  ( ( ( Q ^ ( Q  pCnt  A ) )  e.  ZZ  /\  ( Q ^ ( Q  pCnt  A ) )  =/=  0  /\  ( N  -  1 )  e.  ZZ )  ->  ( ( Q ^ ( Q  pCnt  A ) )  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  ZZ ) )
1017, 99, 85, 100syl3anc 1250 . . . . 5  |-  ( ph  ->  ( ( Q ^
( Q  pCnt  A
) )  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  ZZ ) )
10298, 101mpbid 147 . . . 4  |-  ( ph  ->  ( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  ZZ )
103 peano2zm 9410 . . . . . . . 8  |-  ( ( C ^ ( N  -  1 ) )  e.  ZZ  ->  (
( C ^ ( N  -  1 ) )  -  1 )  e.  ZZ )
10452, 103syl 14 . . . . . . 7  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  -  1 )  e.  ZZ )
105 nnq 9754 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  QQ )
10632, 105syl 14 . . . . . . . . . 10  |-  ( ph  ->  N  e.  QQ )
10731simprd 114 . . . . . . . . . 10  |-  ( ph  ->  1  <  N )
108 q1mod 10501 . . . . . . . . . 10  |-  ( ( N  e.  QQ  /\  1  <  N )  -> 
( 1  mod  N
)  =  1 )
109106, 107, 108syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( 1  mod  N
)  =  1 )
11044, 109eqtr4d 2241 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  mod  N
)  =  ( 1  mod  N ) )
111 1zzd 9399 . . . . . . . . 9  |-  ( ph  ->  1  e.  ZZ )
112 moddvds 12110 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( C ^ ( N  -  1 ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( C ^
( N  -  1 ) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( C ^ ( N  -  1 ) )  -  1 ) ) )
11332, 52, 111, 112syl3anc 1250 . . . . . . . 8  |-  ( ph  ->  ( ( ( C ^ ( N  - 
1 ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( C ^ ( N  - 
1 ) )  - 
1 ) ) )
114110, 113mpbid 147 . . . . . . 7  |-  ( ph  ->  N  ||  ( ( C ^ ( N  -  1 ) )  -  1 ) )
11512, 33, 104, 35, 114dvdstrd 12141 . . . . . 6  |-  ( ph  ->  P  ||  ( ( C ^ ( N  -  1 ) )  -  1 ) )
116 odzdvds 12568 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  C  e.  ZZ  /\  ( C  gcd  P )  =  1 )  /\  ( N  -  1
)  e.  NN0 )  ->  ( P  ||  (
( C ^ ( N  -  1 ) )  -  1 )  <-> 
( ( odZ `  P ) `  C
)  ||  ( N  -  1 ) ) )
11710, 11, 73, 50, 116syl31anc 1253 . . . . . 6  |-  ( ph  ->  ( P  ||  (
( C ^ ( N  -  1 ) )  -  1 )  <-> 
( ( odZ `  P ) `  C
)  ||  ( N  -  1 ) ) )
118115, 117mpbid 147 . . . . 5  |-  ( ph  ->  ( ( odZ `  P ) `  C
)  ||  ( N  -  1 ) )
11949nncnd 9050 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  CC )
1206nncnd 9050 . . . . . 6  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) )  e.  CC )
1216nnap0d 9082 . . . . . 6  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) ) #  0 )
122119, 120, 121divcanap1d 8864 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) )  =  ( N  -  1 ) )
123118, 122breqtrrd 4072 . . . 4  |-  ( ph  ->  ( ( odZ `  P ) `  C
)  ||  ( (
( N  -  1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) ) )
124 nprmdvds1 12462 . . . . . 6  |-  ( P  e.  Prime  ->  -.  P  ||  1 )
1258, 124syl 14 . . . . 5  |-  ( ph  ->  -.  P  ||  1
)
1263nnzd 9494 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  e.  ZZ )
127 iddvdsexp 12126 . . . . . . . . . . . . . 14  |-  ( ( Q  e.  ZZ  /\  ( Q  pCnt  A )  e.  NN )  ->  Q  ||  ( Q ^
( Q  pCnt  A
) ) )
128126, 4, 127syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  ||  ( Q ^ ( Q  pCnt  A ) ) )
129126, 7, 85, 128, 98dvdstrd 12141 . . . . . . . . . . . 12  |-  ( ph  ->  Q  ||  ( N  -  1 ) )
1303nnne0d 9081 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  =/=  0 )
131 dvdsval2 12101 . . . . . . . . . . . . 13  |-  ( ( Q  e.  ZZ  /\  Q  =/=  0  /\  ( N  -  1 )  e.  ZZ )  -> 
( Q  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  Q
)  e.  ZZ ) )
132126, 130, 85, 131syl3anc 1250 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  Q
)  e.  ZZ ) )
133129, 132mpbid 147 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  - 
1 )  /  Q
)  e.  ZZ )
13450nn0ge0d 9351 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( N  -  1 ) )
13549nnred 9049 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  -  1 )  e.  RR )
1363nnred 9049 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  e.  RR )
1373nngt0d 9080 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <  Q )
138 ge0div 8944 . . . . . . . . . . . . 13  |-  ( ( ( N  -  1 )  e.  RR  /\  Q  e.  RR  /\  0  <  Q )  ->  (
0  <_  ( N  -  1 )  <->  0  <_  ( ( N  -  1 )  /  Q ) ) )
139135, 136, 137, 138syl3anc 1250 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  <_  ( N  -  1 )  <->  0  <_  ( ( N  -  1 )  /  Q ) ) )
140134, 139mpbid 147 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  ( ( N  -  1 )  /  Q ) )
141 elnn0z 9385 . . . . . . . . . . 11  |-  ( ( ( N  -  1 )  /  Q )  e.  NN0  <->  ( ( ( N  -  1 )  /  Q )  e.  ZZ  /\  0  <_ 
( ( N  - 
1 )  /  Q
) ) )
142133, 140, 141sylanbrc 417 . . . . . . . . . 10  |-  ( ph  ->  ( ( N  - 
1 )  /  Q
)  e.  NN0 )
143 zexpcl 10699 . . . . . . . . . 10  |-  ( ( C  e.  ZZ  /\  ( ( N  - 
1 )  /  Q
)  e.  NN0 )  ->  ( C ^ (
( N  -  1 )  /  Q ) )  e.  ZZ )
14411, 142, 143syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( C ^ (
( N  -  1 )  /  Q ) )  e.  ZZ )
145 peano2zm 9410 . . . . . . . . 9  |-  ( ( C ^ ( ( N  -  1 )  /  Q ) )  e.  ZZ  ->  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  e.  ZZ )
146144, 145syl 14 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  e.  ZZ )
147 dvdsgcd 12333 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( P  ||  ( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  /\  P  ||  N )  ->  P  ||  ( ( ( C ^ ( ( N  -  1 )  /  Q ) )  - 
1 )  gcd  N
) ) )
14812, 146, 33, 147syl3anc 1250 . . . . . . 7  |-  ( ph  ->  ( ( P  ||  ( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  /\  P  ||  N )  ->  P  ||  ( ( ( C ^ ( ( N  -  1 )  /  Q ) )  - 
1 )  gcd  N
) ) )
14935, 148mpan2d 428 . . . . . 6  |-  ( ph  ->  ( P  ||  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  ->  P  ||  (
( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  gcd  N ) ) )
150 odzdvds 12568 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  C  e.  ZZ  /\  ( C  gcd  P )  =  1 )  /\  ( ( N  - 
1 )  /  Q
)  e.  NN0 )  ->  ( P  ||  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  <-> 
( ( odZ `  P ) `  C
)  ||  ( ( N  -  1 )  /  Q ) ) )
15110, 11, 73, 142, 150syl31anc 1253 . . . . . . 7  |-  ( ph  ->  ( P  ||  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  <-> 
( ( odZ `  P ) `  C
)  ||  ( ( N  -  1 )  /  Q ) ) )
1523nncnd 9050 . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  CC )
1533nnap0d 9082 . . . . . . . . . . 11  |-  ( ph  ->  Q #  0 )
1544nnzd 9494 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  pCnt  A
)  e.  ZZ )
155152, 153, 154expm1apd 10828 . . . . . . . . . 10  |-  ( ph  ->  ( Q ^ (
( Q  pCnt  A
)  -  1 ) )  =  ( ( Q ^ ( Q 
pCnt  A ) )  /  Q ) )
156155oveq2d 5960 . . . . . . . . 9  |-  ( ph  ->  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( ( Q 
pCnt  A )  -  1 ) ) )  =  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( ( Q ^ ( Q 
pCnt  A ) )  /  Q ) ) )
157135, 6nndivred 9086 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  RR )
158157recnd 8101 . . . . . . . . . 10  |-  ( ph  ->  ( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  CC )
159158, 120, 152, 153divassapd 8899 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( N  -  1 )  /  ( Q ^
( Q  pCnt  A
) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) )  /  Q )  =  ( ( ( N  -  1 )  /  ( Q ^
( Q  pCnt  A
) ) )  x.  ( ( Q ^
( Q  pCnt  A
) )  /  Q
) ) )
160122oveq1d 5959 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( N  -  1 )  /  ( Q ^
( Q  pCnt  A
) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) )  /  Q )  =  ( ( N  -  1 )  /  Q ) )
161156, 159, 1603eqtr2d 2244 . . . . . . . 8  |-  ( ph  ->  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( ( Q 
pCnt  A )  -  1 ) ) )  =  ( ( N  - 
1 )  /  Q
) )
162161breq2d 4056 . . . . . . 7  |-  ( ph  ->  ( ( ( odZ `  P ) `  C )  ||  (
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) )  <->  ( ( odZ `  P ) `
 C )  ||  ( ( N  - 
1 )  /  Q
) ) )
163151, 162bitr4d 191 . . . . . 6  |-  ( ph  ->  ( P  ||  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  <-> 
( ( odZ `  P ) `  C
)  ||  ( (
( N  -  1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) ) ) )
164 pockthlem.11 . . . . . . 7  |-  ( ph  ->  ( ( ( C ^ ( ( N  -  1 )  /  Q ) )  - 
1 )  gcd  N
)  =  1 )
165164breq2d 4056 . . . . . 6  |-  ( ph  ->  ( P  ||  (
( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  gcd  N )  <-> 
P  ||  1 ) )
166149, 163, 1653imtr3d 202 . . . . 5  |-  ( ph  ->  ( ( ( odZ `  P ) `  C )  ||  (
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) )  ->  P  ||  1 ) )
167125, 166mtod 665 . . . 4  |-  ( ph  ->  -.  ( ( odZ `  P ) `  C )  ||  (
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) ) )
168 prmpwdvds 12678 . . . 4  |-  ( ( ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  e.  ZZ  /\  ( ( odZ `  P ) `  C
)  e.  ZZ )  /\  ( Q  e. 
Prime  /\  ( Q  pCnt  A )  e.  NN )  /\  ( ( ( odZ `  P
) `  C )  ||  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) )  /\  -.  ( ( odZ `  P ) `  C
)  ||  ( (
( N  -  1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) ) ) )  ->  ( Q ^
( Q  pCnt  A
) )  ||  (
( odZ `  P ) `  C
) )
169102, 76, 1, 4, 123, 167, 168syl222anc 1266 . . 3  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) ) 
||  ( ( odZ `  P ) `  C ) )
170 odzphi 12569 . . . . 5  |-  ( ( P  e.  NN  /\  C  e.  ZZ  /\  ( C  gcd  P )  =  1 )  ->  (
( odZ `  P ) `  C
)  ||  ( phi `  P ) )
17110, 11, 73, 170syl3anc 1250 . . . 4  |-  ( ph  ->  ( ( odZ `  P ) `  C
)  ||  ( phi `  P ) )
172 phiprm 12545 . . . . 5  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
1738, 172syl 14 . . . 4  |-  ( ph  ->  ( phi `  P
)  =  ( P  -  1 ) )
174171, 173breqtrd 4070 . . 3  |-  ( ph  ->  ( ( odZ `  P ) `  C
)  ||  ( P  -  1 ) )
1757, 76, 83, 169, 174dvdstrd 12141 . 2  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) ) 
||  ( P  - 
1 ) )
176 pcdvdsb 12643 . . 3  |-  ( ( Q  e.  Prime  /\  ( P  -  1 )  e.  ZZ  /\  ( Q  pCnt  A )  e. 
NN0 )  ->  (
( Q  pCnt  A
)  <_  ( Q  pCnt  ( P  -  1 ) )  <->  ( Q ^ ( Q  pCnt  A ) )  ||  ( P  -  1 ) ) )
1771, 83, 5, 176syl3anc 1250 . 2  |-  ( ph  ->  ( ( Q  pCnt  A )  <_  ( Q  pCnt  ( P  -  1 ) )  <->  ( Q ^ ( Q  pCnt  A ) )  ||  ( P  -  1 ) ) )
178175, 177mpbird 167 1  |-  ( ph  ->  ( Q  pCnt  A
)  <_  ( Q  pCnt  ( P  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    =/= wne 2376   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930    < clt 8107    <_ cle 8108    - cmin 8243    / cdiv 8745   NNcn 9036   2c2 9087   NN0cn0 9295   ZZcz 9372   ZZ>=cuz 9648   QQcq 9740    mod cmo 10467   ^cexp 10683    || cdvds 12098    gcd cgcd 12274   Primecprime 12429   odZcodz 12530   phicphi 12531    pCnt cpc 12607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-2o 6503  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-proddc 11862  df-dvds 12099  df-gcd 12275  df-prm 12430  df-odz 12532  df-phi 12533  df-pc 12608
This theorem is referenced by:  pockthg  12680
  Copyright terms: Public domain W3C validator