ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pockthlem Unicode version

Theorem pockthlem 12308
Description: Lemma for pockthg 12309. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthg.1  |-  ( ph  ->  A  e.  NN )
pockthg.2  |-  ( ph  ->  B  e.  NN )
pockthg.3  |-  ( ph  ->  B  <  A )
pockthg.4  |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1 ) )
pockthlem.5  |-  ( ph  ->  P  e.  Prime )
pockthlem.6  |-  ( ph  ->  P  ||  N )
pockthlem.7  |-  ( ph  ->  Q  e.  Prime )
pockthlem.8  |-  ( ph  ->  ( Q  pCnt  A
)  e.  NN )
pockthlem.9  |-  ( ph  ->  C  e.  ZZ )
pockthlem.10  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  mod  N
)  =  1 )
pockthlem.11  |-  ( ph  ->  ( ( ( C ^ ( ( N  -  1 )  /  Q ) )  - 
1 )  gcd  N
)  =  1 )
Assertion
Ref Expression
pockthlem  |-  ( ph  ->  ( Q  pCnt  A
)  <_  ( Q  pCnt  ( P  -  1 ) ) )

Proof of Theorem pockthlem
StepHypRef Expression
1 pockthlem.7 . . . . . 6  |-  ( ph  ->  Q  e.  Prime )
2 prmnn 12064 . . . . . 6  |-  ( Q  e.  Prime  ->  Q  e.  NN )
31, 2syl 14 . . . . 5  |-  ( ph  ->  Q  e.  NN )
4 pockthlem.8 . . . . . 6  |-  ( ph  ->  ( Q  pCnt  A
)  e.  NN )
54nnnn0d 9188 . . . . 5  |-  ( ph  ->  ( Q  pCnt  A
)  e.  NN0 )
63, 5nnexpcld 10631 . . . 4  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) )  e.  NN )
76nnzd 9333 . . 3  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) )  e.  ZZ )
8 pockthlem.5 . . . . . 6  |-  ( ph  ->  P  e.  Prime )
9 prmnn 12064 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
108, 9syl 14 . . . . 5  |-  ( ph  ->  P  e.  NN )
11 pockthlem.9 . . . . 5  |-  ( ph  ->  C  e.  ZZ )
1210nnzd 9333 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ZZ )
13 gcddvds 11918 . . . . . . . . . 10  |-  ( ( C  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( C  gcd  P )  ||  C  /\  ( C  gcd  P ) 
||  P ) )
1411, 12, 13syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  P )  ||  C  /\  ( C  gcd  P ) 
||  P ) )
1514simpld 111 . . . . . . . 8  |-  ( ph  ->  ( C  gcd  P
)  ||  C )
1611, 12gcdcld 11923 . . . . . . . . . 10  |-  ( ph  ->  ( C  gcd  P
)  e.  NN0 )
1716nn0zd 9332 . . . . . . . . 9  |-  ( ph  ->  ( C  gcd  P
)  e.  ZZ )
18 pockthg.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1 ) )
19 pockthg.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  NN )
20 pockthg.2 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  NN )
2119, 20nnmulcld 8927 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A  x.  B
)  e.  NN )
22 nnuz 9522 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
2321, 22eleqtrdi 2263 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  x.  B
)  e.  ( ZZ>= ` 
1 ) )
24 eluzp1p1 9512 . . . . . . . . . . . . . . 15  |-  ( ( A  x.  B )  e.  ( ZZ>= `  1
)  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
2523, 24syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
2618, 25eqeltrd 2247 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ( ZZ>= `  ( 1  +  1 ) ) )
27 df-2 8937 . . . . . . . . . . . . . 14  |-  2  =  ( 1  +  1 )
2827fveq2i 5499 . . . . . . . . . . . . 13  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
2926, 28eleqtrrdi 2264 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
30 eluz2b2 9562 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
3129, 30sylib 121 . . . . . . . . . . 11  |-  ( ph  ->  ( N  e.  NN  /\  1  <  N ) )
3231simpld 111 . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN )
3332nnzd 9333 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
3414simprd 113 . . . . . . . . 9  |-  ( ph  ->  ( C  gcd  P
)  ||  P )
35 pockthlem.6 . . . . . . . . 9  |-  ( ph  ->  P  ||  N )
3617, 12, 33, 34, 35dvdstrd 11792 . . . . . . . 8  |-  ( ph  ->  ( C  gcd  P
)  ||  N )
3732nnne0d 8923 . . . . . . . . . 10  |-  ( ph  ->  N  =/=  0 )
38 simpr 109 . . . . . . . . . . 11  |-  ( ( C  =  0  /\  N  =  0 )  ->  N  =  0 )
3938necon3ai 2389 . . . . . . . . . 10  |-  ( N  =/=  0  ->  -.  ( C  =  0  /\  N  =  0
) )
4037, 39syl 14 . . . . . . . . 9  |-  ( ph  ->  -.  ( C  =  0  /\  N  =  0 ) )
41 dvdslegcd 11919 . . . . . . . . 9  |-  ( ( ( ( C  gcd  P )  e.  ZZ  /\  C  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( C  =  0  /\  N  =  0
) )  ->  (
( ( C  gcd  P )  ||  C  /\  ( C  gcd  P ) 
||  N )  -> 
( C  gcd  P
)  <_  ( C  gcd  N ) ) )
4217, 11, 33, 40, 41syl31anc 1236 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  gcd  P )  ||  C  /\  ( C  gcd  P )  ||  N )  ->  ( C  gcd  P )  <_  ( C  gcd  N ) ) )
4315, 36, 42mp2and 431 . . . . . . 7  |-  ( ph  ->  ( C  gcd  P
)  <_  ( C  gcd  N ) )
44 pockthlem.10 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  mod  N
)  =  1 )
4544oveq1d 5868 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C ^ ( N  - 
1 ) )  mod 
N )  gcd  N
)  =  ( 1  gcd  N ) )
46 1z 9238 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
47 eluzp1m1 9510 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  ZZ  /\  N  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( N  -  1 )  e.  ( ZZ>= ` 
1 ) )
4846, 26, 47sylancr 412 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  -  1 )  e.  ( ZZ>= ` 
1 ) )
4948, 22eleqtrrdi 2264 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  -  1 )  e.  NN )
5049nnnn0d 9188 . . . . . . . . . . 11  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
51 zexpcl 10491 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  ( N  -  1
)  e.  NN0 )  ->  ( C ^ ( N  -  1 ) )  e.  ZZ )
5211, 50, 51syl2anc 409 . . . . . . . . . 10  |-  ( ph  ->  ( C ^ ( N  -  1 ) )  e.  ZZ )
53 modgcd 11946 . . . . . . . . . 10  |-  ( ( ( C ^ ( N  -  1 ) )  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( C ^ ( N  - 
1 ) )  mod 
N )  gcd  N
)  =  ( ( C ^ ( N  -  1 ) )  gcd  N ) )
5452, 32, 53syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C ^ ( N  - 
1 ) )  mod 
N )  gcd  N
)  =  ( ( C ^ ( N  -  1 ) )  gcd  N ) )
55 gcdcom 11928 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  gcd  N
)  =  ( N  gcd  1 ) )
5646, 33, 55sylancr 412 . . . . . . . . . 10  |-  ( ph  ->  ( 1  gcd  N
)  =  ( N  gcd  1 ) )
57 gcd1 11942 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N  gcd  1 )  =  1 )
5833, 57syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( N  gcd  1
)  =  1 )
5956, 58eqtrd 2203 . . . . . . . . 9  |-  ( ph  ->  ( 1  gcd  N
)  =  1 )
6045, 54, 593eqtr3d 2211 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  gcd  N
)  =  1 )
61 rpexp 12107 . . . . . . . . 9  |-  ( ( C  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  1 )  e.  NN )  -> 
( ( ( C ^ ( N  - 
1 ) )  gcd 
N )  =  1  <-> 
( C  gcd  N
)  =  1 ) )
6211, 33, 49, 61syl3anc 1233 . . . . . . . 8  |-  ( ph  ->  ( ( ( C ^ ( N  - 
1 ) )  gcd 
N )  =  1  <-> 
( C  gcd  N
)  =  1 ) )
6360, 62mpbid 146 . . . . . . 7  |-  ( ph  ->  ( C  gcd  N
)  =  1 )
6443, 63breqtrd 4015 . . . . . 6  |-  ( ph  ->  ( C  gcd  P
)  <_  1 )
6510nnne0d 8923 . . . . . . . . 9  |-  ( ph  ->  P  =/=  0 )
66 simpr 109 . . . . . . . . . 10  |-  ( ( C  =  0  /\  P  =  0 )  ->  P  =  0 )
6766necon3ai 2389 . . . . . . . . 9  |-  ( P  =/=  0  ->  -.  ( C  =  0  /\  P  =  0
) )
6865, 67syl 14 . . . . . . . 8  |-  ( ph  ->  -.  ( C  =  0  /\  P  =  0 ) )
69 gcdn0cl 11917 . . . . . . . 8  |-  ( ( ( C  e.  ZZ  /\  P  e.  ZZ )  /\  -.  ( C  =  0  /\  P  =  0 ) )  ->  ( C  gcd  P )  e.  NN )
7011, 12, 68, 69syl21anc 1232 . . . . . . 7  |-  ( ph  ->  ( C  gcd  P
)  e.  NN )
71 nnle1eq1 8902 . . . . . . 7  |-  ( ( C  gcd  P )  e.  NN  ->  (
( C  gcd  P
)  <_  1  <->  ( C  gcd  P )  =  1 ) )
7270, 71syl 14 . . . . . 6  |-  ( ph  ->  ( ( C  gcd  P )  <_  1  <->  ( C  gcd  P )  =  1 ) )
7364, 72mpbid 146 . . . . 5  |-  ( ph  ->  ( C  gcd  P
)  =  1 )
74 odzcl 12197 . . . . 5  |-  ( ( P  e.  NN  /\  C  e.  ZZ  /\  ( C  gcd  P )  =  1 )  ->  (
( odZ `  P ) `  C
)  e.  NN )
7510, 11, 73, 74syl3anc 1233 . . . 4  |-  ( ph  ->  ( ( odZ `  P ) `  C
)  e.  NN )
7675nnzd 9333 . . 3  |-  ( ph  ->  ( ( odZ `  P ) `  C
)  e.  ZZ )
77 prmuz2 12085 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
788, 77syl 14 . . . . . . 7  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
7978, 28eleqtrdi 2263 . . . . . 6  |-  ( ph  ->  P  e.  ( ZZ>= `  ( 1  +  1 ) ) )
80 eluzp1m1 9510 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  P  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( P  -  1 )  e.  ( ZZ>= ` 
1 ) )
8146, 79, 80sylancr 412 . . . . 5  |-  ( ph  ->  ( P  -  1 )  e.  ( ZZ>= ` 
1 ) )
8281, 22eleqtrrdi 2264 . . . 4  |-  ( ph  ->  ( P  -  1 )  e.  NN )
8382nnzd 9333 . . 3  |-  ( ph  ->  ( P  -  1 )  e.  ZZ )
8419nnzd 9333 . . . . . 6  |-  ( ph  ->  A  e.  ZZ )
8549nnzd 9333 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
86 pcdvds 12268 . . . . . . 7  |-  ( ( Q  e.  Prime  /\  A  e.  NN )  ->  ( Q ^ ( Q  pCnt  A ) )  ||  A
)
871, 19, 86syl2anc 409 . . . . . 6  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) ) 
||  A )
8820nnzd 9333 . . . . . . . 8  |-  ( ph  ->  B  e.  ZZ )
89 dvdsmul1 11775 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  ||  ( A  x.  B ) )
9084, 88, 89syl2anc 409 . . . . . . 7  |-  ( ph  ->  A  ||  ( A  x.  B ) )
9118oveq1d 5868 . . . . . . . 8  |-  ( ph  ->  ( N  -  1 )  =  ( ( ( A  x.  B
)  +  1 )  -  1 ) )
9221nncnd 8892 . . . . . . . . 9  |-  ( ph  ->  ( A  x.  B
)  e.  CC )
93 ax-1cn 7867 . . . . . . . . 9  |-  1  e.  CC
94 pncan 8125 . . . . . . . . 9  |-  ( ( ( A  x.  B
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( A  x.  B )  +  1 )  -  1 )  =  ( A  x.  B ) )
9592, 93, 94sylancl 411 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  x.  B )  +  1 )  -  1 )  =  ( A  x.  B ) )
9691, 95eqtrd 2203 . . . . . . 7  |-  ( ph  ->  ( N  -  1 )  =  ( A  x.  B ) )
9790, 96breqtrrd 4017 . . . . . 6  |-  ( ph  ->  A  ||  ( N  -  1 ) )
987, 84, 85, 87, 97dvdstrd 11792 . . . . 5  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) ) 
||  ( N  - 
1 ) )
996nnne0d 8923 . . . . . 6  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) )  =/=  0 )
100 dvdsval2 11752 . . . . . 6  |-  ( ( ( Q ^ ( Q  pCnt  A ) )  e.  ZZ  /\  ( Q ^ ( Q  pCnt  A ) )  =/=  0  /\  ( N  -  1 )  e.  ZZ )  ->  ( ( Q ^ ( Q  pCnt  A ) )  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  ZZ ) )
1017, 99, 85, 100syl3anc 1233 . . . . 5  |-  ( ph  ->  ( ( Q ^
( Q  pCnt  A
) )  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  ZZ ) )
10298, 101mpbid 146 . . . 4  |-  ( ph  ->  ( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  ZZ )
103 peano2zm 9250 . . . . . . . 8  |-  ( ( C ^ ( N  -  1 ) )  e.  ZZ  ->  (
( C ^ ( N  -  1 ) )  -  1 )  e.  ZZ )
10452, 103syl 14 . . . . . . 7  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  -  1 )  e.  ZZ )
105 nnq 9592 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  QQ )
10632, 105syl 14 . . . . . . . . . 10  |-  ( ph  ->  N  e.  QQ )
10731simprd 113 . . . . . . . . . 10  |-  ( ph  ->  1  <  N )
108 q1mod 10312 . . . . . . . . . 10  |-  ( ( N  e.  QQ  /\  1  <  N )  -> 
( 1  mod  N
)  =  1 )
109106, 107, 108syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( 1  mod  N
)  =  1 )
11044, 109eqtr4d 2206 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  mod  N
)  =  ( 1  mod  N ) )
111 1zzd 9239 . . . . . . . . 9  |-  ( ph  ->  1  e.  ZZ )
112 moddvds 11761 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( C ^ ( N  -  1 ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( C ^
( N  -  1 ) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( C ^ ( N  -  1 ) )  -  1 ) ) )
11332, 52, 111, 112syl3anc 1233 . . . . . . . 8  |-  ( ph  ->  ( ( ( C ^ ( N  - 
1 ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( C ^ ( N  - 
1 ) )  - 
1 ) ) )
114110, 113mpbid 146 . . . . . . 7  |-  ( ph  ->  N  ||  ( ( C ^ ( N  -  1 ) )  -  1 ) )
11512, 33, 104, 35, 114dvdstrd 11792 . . . . . 6  |-  ( ph  ->  P  ||  ( ( C ^ ( N  -  1 ) )  -  1 ) )
116 odzdvds 12199 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  C  e.  ZZ  /\  ( C  gcd  P )  =  1 )  /\  ( N  -  1
)  e.  NN0 )  ->  ( P  ||  (
( C ^ ( N  -  1 ) )  -  1 )  <-> 
( ( odZ `  P ) `  C
)  ||  ( N  -  1 ) ) )
11710, 11, 73, 50, 116syl31anc 1236 . . . . . 6  |-  ( ph  ->  ( P  ||  (
( C ^ ( N  -  1 ) )  -  1 )  <-> 
( ( odZ `  P ) `  C
)  ||  ( N  -  1 ) ) )
118115, 117mpbid 146 . . . . 5  |-  ( ph  ->  ( ( odZ `  P ) `  C
)  ||  ( N  -  1 ) )
11949nncnd 8892 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  CC )
1206nncnd 8892 . . . . . 6  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) )  e.  CC )
1216nnap0d 8924 . . . . . 6  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) ) #  0 )
122119, 120, 121divcanap1d 8708 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) )  =  ( N  -  1 ) )
123118, 122breqtrrd 4017 . . . 4  |-  ( ph  ->  ( ( odZ `  P ) `  C
)  ||  ( (
( N  -  1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) ) )
124 nprmdvds1 12094 . . . . . 6  |-  ( P  e.  Prime  ->  -.  P  ||  1 )
1258, 124syl 14 . . . . 5  |-  ( ph  ->  -.  P  ||  1
)
1263nnzd 9333 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  e.  ZZ )
127 iddvdsexp 11777 . . . . . . . . . . . . . 14  |-  ( ( Q  e.  ZZ  /\  ( Q  pCnt  A )  e.  NN )  ->  Q  ||  ( Q ^
( Q  pCnt  A
) ) )
128126, 4, 127syl2anc 409 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  ||  ( Q ^ ( Q  pCnt  A ) ) )
129126, 7, 85, 128, 98dvdstrd 11792 . . . . . . . . . . . 12  |-  ( ph  ->  Q  ||  ( N  -  1 ) )
1303nnne0d 8923 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  =/=  0 )
131 dvdsval2 11752 . . . . . . . . . . . . 13  |-  ( ( Q  e.  ZZ  /\  Q  =/=  0  /\  ( N  -  1 )  e.  ZZ )  -> 
( Q  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  Q
)  e.  ZZ ) )
132126, 130, 85, 131syl3anc 1233 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  Q
)  e.  ZZ ) )
133129, 132mpbid 146 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  - 
1 )  /  Q
)  e.  ZZ )
13450nn0ge0d 9191 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( N  -  1 ) )
13549nnred 8891 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  -  1 )  e.  RR )
1363nnred 8891 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  e.  RR )
1373nngt0d 8922 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <  Q )
138 ge0div 8787 . . . . . . . . . . . . 13  |-  ( ( ( N  -  1 )  e.  RR  /\  Q  e.  RR  /\  0  <  Q )  ->  (
0  <_  ( N  -  1 )  <->  0  <_  ( ( N  -  1 )  /  Q ) ) )
139135, 136, 137, 138syl3anc 1233 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  <_  ( N  -  1 )  <->  0  <_  ( ( N  -  1 )  /  Q ) ) )
140134, 139mpbid 146 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  ( ( N  -  1 )  /  Q ) )
141 elnn0z 9225 . . . . . . . . . . 11  |-  ( ( ( N  -  1 )  /  Q )  e.  NN0  <->  ( ( ( N  -  1 )  /  Q )  e.  ZZ  /\  0  <_ 
( ( N  - 
1 )  /  Q
) ) )
142133, 140, 141sylanbrc 415 . . . . . . . . . 10  |-  ( ph  ->  ( ( N  - 
1 )  /  Q
)  e.  NN0 )
143 zexpcl 10491 . . . . . . . . . 10  |-  ( ( C  e.  ZZ  /\  ( ( N  - 
1 )  /  Q
)  e.  NN0 )  ->  ( C ^ (
( N  -  1 )  /  Q ) )  e.  ZZ )
14411, 142, 143syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( C ^ (
( N  -  1 )  /  Q ) )  e.  ZZ )
145 peano2zm 9250 . . . . . . . . 9  |-  ( ( C ^ ( ( N  -  1 )  /  Q ) )  e.  ZZ  ->  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  e.  ZZ )
146144, 145syl 14 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  e.  ZZ )
147 dvdsgcd 11967 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( P  ||  ( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  /\  P  ||  N )  ->  P  ||  ( ( ( C ^ ( ( N  -  1 )  /  Q ) )  - 
1 )  gcd  N
) ) )
14812, 146, 33, 147syl3anc 1233 . . . . . . 7  |-  ( ph  ->  ( ( P  ||  ( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  /\  P  ||  N )  ->  P  ||  ( ( ( C ^ ( ( N  -  1 )  /  Q ) )  - 
1 )  gcd  N
) ) )
14935, 148mpan2d 426 . . . . . 6  |-  ( ph  ->  ( P  ||  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  ->  P  ||  (
( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  gcd  N ) ) )
150 odzdvds 12199 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  C  e.  ZZ  /\  ( C  gcd  P )  =  1 )  /\  ( ( N  - 
1 )  /  Q
)  e.  NN0 )  ->  ( P  ||  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  <-> 
( ( odZ `  P ) `  C
)  ||  ( ( N  -  1 )  /  Q ) ) )
15110, 11, 73, 142, 150syl31anc 1236 . . . . . . 7  |-  ( ph  ->  ( P  ||  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  <-> 
( ( odZ `  P ) `  C
)  ||  ( ( N  -  1 )  /  Q ) ) )
1523nncnd 8892 . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  CC )
1533nnap0d 8924 . . . . . . . . . . 11  |-  ( ph  ->  Q #  0 )
1544nnzd 9333 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  pCnt  A
)  e.  ZZ )
155152, 153, 154expm1apd 10619 . . . . . . . . . 10  |-  ( ph  ->  ( Q ^ (
( Q  pCnt  A
)  -  1 ) )  =  ( ( Q ^ ( Q 
pCnt  A ) )  /  Q ) )
156155oveq2d 5869 . . . . . . . . 9  |-  ( ph  ->  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( ( Q 
pCnt  A )  -  1 ) ) )  =  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( ( Q ^ ( Q 
pCnt  A ) )  /  Q ) ) )
157135, 6nndivred 8928 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  RR )
158157recnd 7948 . . . . . . . . . 10  |-  ( ph  ->  ( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  CC )
159158, 120, 152, 153divassapd 8743 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( N  -  1 )  /  ( Q ^
( Q  pCnt  A
) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) )  /  Q )  =  ( ( ( N  -  1 )  /  ( Q ^
( Q  pCnt  A
) ) )  x.  ( ( Q ^
( Q  pCnt  A
) )  /  Q
) ) )
160122oveq1d 5868 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( N  -  1 )  /  ( Q ^
( Q  pCnt  A
) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) )  /  Q )  =  ( ( N  -  1 )  /  Q ) )
161156, 159, 1603eqtr2d 2209 . . . . . . . 8  |-  ( ph  ->  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( ( Q 
pCnt  A )  -  1 ) ) )  =  ( ( N  - 
1 )  /  Q
) )
162161breq2d 4001 . . . . . . 7  |-  ( ph  ->  ( ( ( odZ `  P ) `  C )  ||  (
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) )  <->  ( ( odZ `  P ) `
 C )  ||  ( ( N  - 
1 )  /  Q
) ) )
163151, 162bitr4d 190 . . . . . 6  |-  ( ph  ->  ( P  ||  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  <-> 
( ( odZ `  P ) `  C
)  ||  ( (
( N  -  1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) ) ) )
164 pockthlem.11 . . . . . . 7  |-  ( ph  ->  ( ( ( C ^ ( ( N  -  1 )  /  Q ) )  - 
1 )  gcd  N
)  =  1 )
165164breq2d 4001 . . . . . 6  |-  ( ph  ->  ( P  ||  (
( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  gcd  N )  <-> 
P  ||  1 ) )
166149, 163, 1653imtr3d 201 . . . . 5  |-  ( ph  ->  ( ( ( odZ `  P ) `  C )  ||  (
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) )  ->  P  ||  1 ) )
167125, 166mtod 658 . . . 4  |-  ( ph  ->  -.  ( ( odZ `  P ) `  C )  ||  (
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) ) )
168 prmpwdvds 12307 . . . 4  |-  ( ( ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  e.  ZZ  /\  ( ( odZ `  P ) `  C
)  e.  ZZ )  /\  ( Q  e. 
Prime  /\  ( Q  pCnt  A )  e.  NN )  /\  ( ( ( odZ `  P
) `  C )  ||  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) )  /\  -.  ( ( odZ `  P ) `  C
)  ||  ( (
( N  -  1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) ) ) )  ->  ( Q ^
( Q  pCnt  A
) )  ||  (
( odZ `  P ) `  C
) )
169102, 76, 1, 4, 123, 167, 168syl222anc 1249 . . 3  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) ) 
||  ( ( odZ `  P ) `  C ) )
170 odzphi 12200 . . . . 5  |-  ( ( P  e.  NN  /\  C  e.  ZZ  /\  ( C  gcd  P )  =  1 )  ->  (
( odZ `  P ) `  C
)  ||  ( phi `  P ) )
17110, 11, 73, 170syl3anc 1233 . . . 4  |-  ( ph  ->  ( ( odZ `  P ) `  C
)  ||  ( phi `  P ) )
172 phiprm 12177 . . . . 5  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
1738, 172syl 14 . . . 4  |-  ( ph  ->  ( phi `  P
)  =  ( P  -  1 ) )
174171, 173breqtrd 4015 . . 3  |-  ( ph  ->  ( ( odZ `  P ) `  C
)  ||  ( P  -  1 ) )
1757, 76, 83, 169, 174dvdstrd 11792 . 2  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) ) 
||  ( P  - 
1 ) )
176 pcdvdsb 12273 . . 3  |-  ( ( Q  e.  Prime  /\  ( P  -  1 )  e.  ZZ  /\  ( Q  pCnt  A )  e. 
NN0 )  ->  (
( Q  pCnt  A
)  <_  ( Q  pCnt  ( P  -  1 ) )  <->  ( Q ^ ( Q  pCnt  A ) )  ||  ( P  -  1 ) ) )
1771, 83, 5, 176syl3anc 1233 . 2  |-  ( ph  ->  ( ( Q  pCnt  A )  <_  ( Q  pCnt  ( P  -  1 ) )  <->  ( Q ^ ( Q  pCnt  A ) )  ||  ( P  -  1 ) ) )
178175, 177mpbird 166 1  |-  ( ph  ->  ( Q  pCnt  A
)  <_  ( Q  pCnt  ( P  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090    / cdiv 8589   NNcn 8878   2c2 8929   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   QQcq 9578    mod cmo 10278   ^cexp 10475    || cdvds 11749    gcd cgcd 11897   Primecprime 12061   odZcodz 12162   phicphi 12163    pCnt cpc 12238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-2o 6396  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-prm 12062  df-odz 12164  df-phi 12165  df-pc 12239
This theorem is referenced by:  pockthg  12309
  Copyright terms: Public domain W3C validator