ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map0b Unicode version

Theorem map0b 6743
Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
map0b  |-  ( A  =/=  (/)  ->  ( (/)  ^m  A
)  =  (/) )

Proof of Theorem map0b
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 elmapi 6726 . . . 4  |-  ( f  e.  ( (/)  ^m  A
)  ->  f : A
--> (/) )
2 fdm 5410 . . . . 5  |-  ( f : A --> (/)  ->  dom  f  =  A )
3 frn 5413 . . . . . . 7  |-  ( f : A --> (/)  ->  ran  f  C_  (/) )
4 ss0 3488 . . . . . . 7  |-  ( ran  f  C_  (/)  ->  ran  f  =  (/) )
53, 4syl 14 . . . . . 6  |-  ( f : A --> (/)  ->  ran  f  =  (/) )
6 dm0rn0 4880 . . . . . 6  |-  ( dom  f  =  (/)  <->  ran  f  =  (/) )
75, 6sylibr 134 . . . . 5  |-  ( f : A --> (/)  ->  dom  f  =  (/) )
82, 7eqtr3d 2228 . . . 4  |-  ( f : A --> (/)  ->  A  =  (/) )
91, 8syl 14 . . 3  |-  ( f  e.  ( (/)  ^m  A
)  ->  A  =  (/) )
109necon3ai 2413 . 2  |-  ( A  =/=  (/)  ->  -.  f  e.  ( (/)  ^m  A ) )
1110eq0rdv 3492 1  |-  ( A  =/=  (/)  ->  ( (/)  ^m  A
)  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164    =/= wne 2364    C_ wss 3154   (/)c0 3447   dom cdm 4660   ran crn 4661   -->wf 5251  (class class class)co 5919    ^m cmap 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-map 6706
This theorem is referenced by:  map0g  6744
  Copyright terms: Public domain W3C validator