ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map0b Unicode version

Theorem map0b 6665
Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
map0b  |-  ( A  =/=  (/)  ->  ( (/)  ^m  A
)  =  (/) )

Proof of Theorem map0b
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 elmapi 6648 . . . 4  |-  ( f  e.  ( (/)  ^m  A
)  ->  f : A
--> (/) )
2 fdm 5353 . . . . 5  |-  ( f : A --> (/)  ->  dom  f  =  A )
3 frn 5356 . . . . . . 7  |-  ( f : A --> (/)  ->  ran  f  C_  (/) )
4 ss0 3455 . . . . . . 7  |-  ( ran  f  C_  (/)  ->  ran  f  =  (/) )
53, 4syl 14 . . . . . 6  |-  ( f : A --> (/)  ->  ran  f  =  (/) )
6 dm0rn0 4828 . . . . . 6  |-  ( dom  f  =  (/)  <->  ran  f  =  (/) )
75, 6sylibr 133 . . . . 5  |-  ( f : A --> (/)  ->  dom  f  =  (/) )
82, 7eqtr3d 2205 . . . 4  |-  ( f : A --> (/)  ->  A  =  (/) )
91, 8syl 14 . . 3  |-  ( f  e.  ( (/)  ^m  A
)  ->  A  =  (/) )
109necon3ai 2389 . 2  |-  ( A  =/=  (/)  ->  -.  f  e.  ( (/)  ^m  A ) )
1110eq0rdv 3459 1  |-  ( A  =/=  (/)  ->  ( (/)  ^m  A
)  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141    =/= wne 2340    C_ wss 3121   (/)c0 3414   dom cdm 4611   ran crn 4612   -->wf 5194  (class class class)co 5853    ^m cmap 6626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-map 6628
This theorem is referenced by:  map0g  6666
  Copyright terms: Public domain W3C validator