ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map0b Unicode version

Theorem map0b 6712
Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
map0b  |-  ( A  =/=  (/)  ->  ( (/)  ^m  A
)  =  (/) )

Proof of Theorem map0b
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 elmapi 6695 . . . 4  |-  ( f  e.  ( (/)  ^m  A
)  ->  f : A
--> (/) )
2 fdm 5390 . . . . 5  |-  ( f : A --> (/)  ->  dom  f  =  A )
3 frn 5393 . . . . . . 7  |-  ( f : A --> (/)  ->  ran  f  C_  (/) )
4 ss0 3478 . . . . . . 7  |-  ( ran  f  C_  (/)  ->  ran  f  =  (/) )
53, 4syl 14 . . . . . 6  |-  ( f : A --> (/)  ->  ran  f  =  (/) )
6 dm0rn0 4862 . . . . . 6  |-  ( dom  f  =  (/)  <->  ran  f  =  (/) )
75, 6sylibr 134 . . . . 5  |-  ( f : A --> (/)  ->  dom  f  =  (/) )
82, 7eqtr3d 2224 . . . 4  |-  ( f : A --> (/)  ->  A  =  (/) )
91, 8syl 14 . . 3  |-  ( f  e.  ( (/)  ^m  A
)  ->  A  =  (/) )
109necon3ai 2409 . 2  |-  ( A  =/=  (/)  ->  -.  f  e.  ( (/)  ^m  A ) )
1110eq0rdv 3482 1  |-  ( A  =/=  (/)  ->  ( (/)  ^m  A
)  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160    =/= wne 2360    C_ wss 3144   (/)c0 3437   dom cdm 4644   ran crn 4645   -->wf 5231  (class class class)co 5895    ^m cmap 6673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-map 6675
This theorem is referenced by:  map0g  6713
  Copyright terms: Public domain W3C validator