ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map0b Unicode version

Theorem map0b 6755
Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
map0b  |-  ( A  =/=  (/)  ->  ( (/)  ^m  A
)  =  (/) )

Proof of Theorem map0b
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 elmapi 6738 . . . 4  |-  ( f  e.  ( (/)  ^m  A
)  ->  f : A
--> (/) )
2 fdm 5416 . . . . 5  |-  ( f : A --> (/)  ->  dom  f  =  A )
3 frn 5419 . . . . . . 7  |-  ( f : A --> (/)  ->  ran  f  C_  (/) )
4 ss0 3492 . . . . . . 7  |-  ( ran  f  C_  (/)  ->  ran  f  =  (/) )
53, 4syl 14 . . . . . 6  |-  ( f : A --> (/)  ->  ran  f  =  (/) )
6 dm0rn0 4884 . . . . . 6  |-  ( dom  f  =  (/)  <->  ran  f  =  (/) )
75, 6sylibr 134 . . . . 5  |-  ( f : A --> (/)  ->  dom  f  =  (/) )
82, 7eqtr3d 2231 . . . 4  |-  ( f : A --> (/)  ->  A  =  (/) )
91, 8syl 14 . . 3  |-  ( f  e.  ( (/)  ^m  A
)  ->  A  =  (/) )
109necon3ai 2416 . 2  |-  ( A  =/=  (/)  ->  -.  f  e.  ( (/)  ^m  A ) )
1110eq0rdv 3496 1  |-  ( A  =/=  (/)  ->  ( (/)  ^m  A
)  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    =/= wne 2367    C_ wss 3157   (/)c0 3451   dom cdm 4664   ran crn 4665   -->wf 5255  (class class class)co 5925    ^m cmap 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-map 6718
This theorem is referenced by:  map0g  6756
  Copyright terms: Public domain W3C validator