ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsn2 Unicode version

Theorem disjsn2 3696
Description: Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
disjsn2  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )

Proof of Theorem disjsn2
StepHypRef Expression
1 elsni 3651 . . . 4  |-  ( B  e.  { A }  ->  B  =  A )
21eqcomd 2211 . . 3  |-  ( B  e.  { A }  ->  A  =  B )
32necon3ai 2425 . 2  |-  ( A  =/=  B  ->  -.  B  e.  { A } )
4 disjsn 3695 . 2  |-  ( ( { A }  i^i  { B } )  =  (/) 
<->  -.  B  e.  { A } )
53, 4sylibr 134 1  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1373    e. wcel 2176    =/= wne 2376    i^i cin 3165   (/)c0 3460   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-v 2774  df-dif 3168  df-in 3172  df-nul 3461  df-sn 3639
This theorem is referenced by:  disjpr2  3697  difprsn1  3772  diftpsn3  3774  xpsndisj  5109  funprg  5324  funtp  5327  f1oprg  5566  xp01disjl  6520  enpr2d  6911  phplem1  6949  prfidisj  7024  djuinr  7165  pm54.43  7298  pr2nelem  7299  sumpr  11724  setsfun0  12868  setscom  12872  perfectlem2  15472
  Copyright terms: Public domain W3C validator