| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjsn2 | Unicode version | ||
| Description: Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.) |
| Ref | Expression |
|---|---|
| disjsn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 3651 |
. . . 4
| |
| 2 | 1 | eqcomd 2211 |
. . 3
|
| 3 | 2 | necon3ai 2425 |
. 2
|
| 4 | disjsn 3695 |
. 2
| |
| 5 | 3, 4 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-v 2774 df-dif 3168 df-in 3172 df-nul 3461 df-sn 3639 |
| This theorem is referenced by: disjpr2 3697 difprsn1 3772 diftpsn3 3774 xpsndisj 5109 funprg 5324 funtp 5327 f1oprg 5566 xp01disjl 6520 enpr2d 6911 phplem1 6949 prfidisj 7024 djuinr 7165 pm54.43 7298 pr2nelem 7299 sumpr 11724 setsfun0 12868 setscom 12872 perfectlem2 15472 |
| Copyright terms: Public domain | W3C validator |