ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsn2 Unicode version

Theorem disjsn2 3706
Description: Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
disjsn2  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )

Proof of Theorem disjsn2
StepHypRef Expression
1 elsni 3661 . . . 4  |-  ( B  e.  { A }  ->  B  =  A )
21eqcomd 2213 . . 3  |-  ( B  e.  { A }  ->  A  =  B )
32necon3ai 2427 . 2  |-  ( A  =/=  B  ->  -.  B  e.  { A } )
4 disjsn 3705 . 2  |-  ( ( { A }  i^i  { B } )  =  (/) 
<->  -.  B  e.  { A } )
53, 4sylibr 134 1  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1373    e. wcel 2178    =/= wne 2378    i^i cin 3173   (/)c0 3468   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-v 2778  df-dif 3176  df-in 3180  df-nul 3469  df-sn 3649
This theorem is referenced by:  disjpr2  3707  difprsn1  3783  diftpsn3  3785  xpsndisj  5128  funprg  5343  funtp  5346  f1oprg  5589  xp01disjl  6543  enpr2d  6935  phplem1  6974  prfidisj  7050  djuinr  7191  pm54.43  7324  pr2nelem  7325  sumpr  11839  setsfun0  12983  setscom  12987  perfectlem2  15587
  Copyright terms: Public domain W3C validator