| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjsn2 | Unicode version | ||
| Description: Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.) |
| Ref | Expression |
|---|---|
| disjsn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 3661 |
. . . 4
| |
| 2 | 1 | eqcomd 2213 |
. . 3
|
| 3 | 2 | necon3ai 2427 |
. 2
|
| 4 | disjsn 3705 |
. 2
| |
| 5 | 3, 4 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-v 2778 df-dif 3176 df-in 3180 df-nul 3469 df-sn 3649 |
| This theorem is referenced by: disjpr2 3707 difprsn1 3783 diftpsn3 3785 xpsndisj 5128 funprg 5343 funtp 5346 f1oprg 5589 xp01disjl 6543 enpr2d 6935 phplem1 6974 prfidisj 7050 djuinr 7191 pm54.43 7324 pr2nelem 7325 sumpr 11839 setsfun0 12983 setscom 12987 perfectlem2 15587 |
| Copyright terms: Public domain | W3C validator |