| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjsn2 | Unicode version | ||
| Description: Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.) |
| Ref | Expression |
|---|---|
| disjsn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 3640 |
. . . 4
| |
| 2 | 1 | eqcomd 2202 |
. . 3
|
| 3 | 2 | necon3ai 2416 |
. 2
|
| 4 | disjsn 3684 |
. 2
| |
| 5 | 3, 4 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-in 3163 df-nul 3451 df-sn 3628 |
| This theorem is referenced by: disjpr2 3686 difprsn1 3761 diftpsn3 3763 xpsndisj 5096 funprg 5308 funtp 5311 f1oprg 5548 xp01disjl 6492 enpr2d 6876 phplem1 6913 prfidisj 6988 djuinr 7129 pm54.43 7257 pr2nelem 7258 sumpr 11578 setsfun0 12714 setscom 12718 perfectlem2 15236 |
| Copyright terms: Public domain | W3C validator |