ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsn2 Unicode version

Theorem disjsn2 3681
Description: Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
disjsn2  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )

Proof of Theorem disjsn2
StepHypRef Expression
1 elsni 3636 . . . 4  |-  ( B  e.  { A }  ->  B  =  A )
21eqcomd 2199 . . 3  |-  ( B  e.  { A }  ->  A  =  B )
32necon3ai 2413 . 2  |-  ( A  =/=  B  ->  -.  B  e.  { A } )
4 disjsn 3680 . 2  |-  ( ( { A }  i^i  { B } )  =  (/) 
<->  -.  B  e.  { A } )
53, 4sylibr 134 1  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364    e. wcel 2164    =/= wne 2364    i^i cin 3152   (/)c0 3446   {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-v 2762  df-dif 3155  df-in 3159  df-nul 3447  df-sn 3624
This theorem is referenced by:  disjpr2  3682  difprsn1  3757  diftpsn3  3759  xpsndisj  5092  funprg  5304  funtp  5307  f1oprg  5544  xp01disjl  6487  enpr2d  6871  phplem1  6908  prfidisj  6983  djuinr  7122  pm54.43  7250  pr2nelem  7251  sumpr  11556  setsfun0  12654  setscom  12658
  Copyright terms: Public domain W3C validator