| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcprod | Unicode version | ||
| Description: Bound-variable hypothesis
builder for product: if |
| Ref | Expression |
|---|---|
| nfcprod.1 |
|
| nfcprod.2 |
|
| Ref | Expression |
|---|---|
| nfcprod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-proddc 11733 |
. 2
| |
| 2 | nfcv 2339 |
. . . . 5
| |
| 3 | nfcprod.1 |
. . . . . . . 8
| |
| 4 | nfcv 2339 |
. . . . . . . 8
| |
| 5 | 3, 4 | nfss 3177 |
. . . . . . 7
|
| 6 | 3 | nfcri 2333 |
. . . . . . . . 9
|
| 7 | 6 | nfdc 1673 |
. . . . . . . 8
|
| 8 | 4, 7 | nfralxy 2535 |
. . . . . . 7
|
| 9 | 5, 8 | nfan 1579 |
. . . . . 6
|
| 10 | nfv 1542 |
. . . . . . . . . 10
| |
| 11 | nfcv 2339 |
. . . . . . . . . . . 12
| |
| 12 | nfcv 2339 |
. . . . . . . . . . . 12
| |
| 13 | 3 | nfcri 2333 |
. . . . . . . . . . . . . 14
|
| 14 | nfcprod.2 |
. . . . . . . . . . . . . 14
| |
| 15 | nfcv 2339 |
. . . . . . . . . . . . . 14
| |
| 16 | 13, 14, 15 | nfif 3590 |
. . . . . . . . . . . . 13
|
| 17 | 2, 16 | nfmpt 4126 |
. . . . . . . . . . . 12
|
| 18 | 11, 12, 17 | nfseq 10566 |
. . . . . . . . . . 11
|
| 19 | nfcv 2339 |
. . . . . . . . . . 11
| |
| 20 | nfcv 2339 |
. . . . . . . . . . 11
| |
| 21 | 18, 19, 20 | nfbr 4080 |
. . . . . . . . . 10
|
| 22 | 10, 21 | nfan 1579 |
. . . . . . . . 9
|
| 23 | 22 | nfex 1651 |
. . . . . . . 8
|
| 24 | 4, 23 | nfrexw 2536 |
. . . . . . 7
|
| 25 | nfcv 2339 |
. . . . . . . . 9
| |
| 26 | 25, 12, 17 | nfseq 10566 |
. . . . . . . 8
|
| 27 | nfcv 2339 |
. . . . . . . 8
| |
| 28 | 26, 19, 27 | nfbr 4080 |
. . . . . . 7
|
| 29 | 24, 28 | nfan 1579 |
. . . . . 6
|
| 30 | 9, 29 | nfan 1579 |
. . . . 5
|
| 31 | 2, 30 | nfrexw 2536 |
. . . 4
|
| 32 | nfcv 2339 |
. . . . 5
| |
| 33 | nfcv 2339 |
. . . . . . . 8
| |
| 34 | nfcv 2339 |
. . . . . . . 8
| |
| 35 | 33, 34, 3 | nff1o 5505 |
. . . . . . 7
|
| 36 | nfv 1542 |
. . . . . . . . . . . 12
| |
| 37 | nfcv 2339 |
. . . . . . . . . . . . 13
| |
| 38 | 37, 14 | nfcsb 3122 |
. . . . . . . . . . . 12
|
| 39 | 36, 38, 15 | nfif 3590 |
. . . . . . . . . . 11
|
| 40 | 32, 39 | nfmpt 4126 |
. . . . . . . . . 10
|
| 41 | 15, 12, 40 | nfseq 10566 |
. . . . . . . . 9
|
| 42 | 41, 25 | nffv 5571 |
. . . . . . . 8
|
| 43 | 42 | nfeq2 2351 |
. . . . . . 7
|
| 44 | 35, 43 | nfan 1579 |
. . . . . 6
|
| 45 | 44 | nfex 1651 |
. . . . 5
|
| 46 | 32, 45 | nfrexw 2536 |
. . . 4
|
| 47 | 31, 46 | nfor 1588 |
. . 3
|
| 48 | 47 | nfiotaw 5224 |
. 2
|
| 49 | 1, 48 | nfcxfr 2336 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-seqfrec 10557 df-proddc 11733 |
| This theorem is referenced by: fprod2dlemstep 11804 fprodcom2fi 11808 |
| Copyright terms: Public domain | W3C validator |