ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcprod Unicode version

Theorem nfcprod 11720
Description: Bound-variable hypothesis builder for product: if  x is (effectively) not free in  A and  B, it is not free in  prod_ k  e.  A B. (Contributed by Scott Fenton, 1-Dec-2017.)
Hypotheses
Ref Expression
nfcprod.1  |-  F/_ x A
nfcprod.2  |-  F/_ x B
Assertion
Ref Expression
nfcprod  |-  F/_ x prod_ k  e.  A  B
Distinct variable group:    x, k
Allowed substitution hints:    A( x, k)    B( x, k)

Proof of Theorem nfcprod
Dummy variables  f  j  m  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proddc 11716 . 2  |-  prod_ k  e.  A  B  =  ( iota y ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
2 nfcv 2339 . . . . 5  |-  F/_ x ZZ
3 nfcprod.1 . . . . . . . 8  |-  F/_ x A
4 nfcv 2339 . . . . . . . 8  |-  F/_ x
( ZZ>= `  m )
53, 4nfss 3176 . . . . . . 7  |-  F/ x  A  C_  ( ZZ>= `  m
)
63nfcri 2333 . . . . . . . . 9  |-  F/ x  j  e.  A
76nfdc 1673 . . . . . . . 8  |-  F/ xDECID  j  e.  A
84, 7nfralxy 2535 . . . . . . 7  |-  F/ x A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A
95, 8nfan 1579 . . . . . 6  |-  F/ x
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
10 nfv 1542 . . . . . . . . . 10  |-  F/ x  z #  0
11 nfcv 2339 . . . . . . . . . . . 12  |-  F/_ x n
12 nfcv 2339 . . . . . . . . . . . 12  |-  F/_ x  x.
133nfcri 2333 . . . . . . . . . . . . . 14  |-  F/ x  k  e.  A
14 nfcprod.2 . . . . . . . . . . . . . 14  |-  F/_ x B
15 nfcv 2339 . . . . . . . . . . . . . 14  |-  F/_ x
1
1613, 14, 15nfif 3589 . . . . . . . . . . . . 13  |-  F/_ x if ( k  e.  A ,  B ,  1 )
172, 16nfmpt 4125 . . . . . . . . . . . 12  |-  F/_ x
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
1811, 12, 17nfseq 10549 . . . . . . . . . . 11  |-  F/_ x  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
19 nfcv 2339 . . . . . . . . . . 11  |-  F/_ x  ~~>
20 nfcv 2339 . . . . . . . . . . 11  |-  F/_ x
z
2118, 19, 20nfbr 4079 . . . . . . . . . 10  |-  F/ x  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z
2210, 21nfan 1579 . . . . . . . . 9  |-  F/ x
( z #  0  /\ 
seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )
2322nfex 1651 . . . . . . . 8  |-  F/ x E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )
244, 23nfrexw 2536 . . . . . . 7  |-  F/ x E. n  e.  ( ZZ>=
`  m ) E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )
25 nfcv 2339 . . . . . . . . 9  |-  F/_ x m
2625, 12, 17nfseq 10549 . . . . . . . 8  |-  F/_ x  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
27 nfcv 2339 . . . . . . . 8  |-  F/_ x
y
2826, 19, 27nfbr 4079 . . . . . . 7  |-  F/ x  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y
2924, 28nfan 1579 . . . . . 6  |-  F/ x
( E. n  e.  ( ZZ>= `  m ) E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
309, 29nfan 1579 . . . . 5  |-  F/ x
( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
312, 30nfrexw 2536 . . . 4  |-  F/ x E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
32 nfcv 2339 . . . . 5  |-  F/_ x NN
33 nfcv 2339 . . . . . . . 8  |-  F/_ x
f
34 nfcv 2339 . . . . . . . 8  |-  F/_ x
( 1 ... m
)
3533, 34, 3nff1o 5502 . . . . . . 7  |-  F/ x  f : ( 1 ... m ) -1-1-onto-> A
36 nfv 1542 . . . . . . . . . . . 12  |-  F/ x  n  <_  m
37 nfcv 2339 . . . . . . . . . . . . 13  |-  F/_ x
( f `  n
)
3837, 14nfcsb 3122 . . . . . . . . . . . 12  |-  F/_ x [_ ( f `  n
)  /  k ]_ B
3936, 38, 15nfif 3589 . . . . . . . . . . 11  |-  F/_ x if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 )
4032, 39nfmpt 4125 . . . . . . . . . 10  |-  F/_ x
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) )
4115, 12, 40nfseq 10549 . . . . . . . . 9  |-  F/_ x  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) )
4241, 25nffv 5568 . . . . . . . 8  |-  F/_ x
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
)
4342nfeq2 2351 . . . . . . 7  |-  F/ x  y  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)
4435, 43nfan 1579 . . . . . 6  |-  F/ x
( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4544nfex 1651 . . . . 5  |-  F/ x E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4632, 45nfrexw 2536 . . . 4  |-  F/ x E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4731, 46nfor 1588 . . 3  |-  F/ x
( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )
4847nfiotaw 5223 . 2  |-  F/_ x
( iota y ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
491, 48nfcxfr 2336 1  |-  F/_ x prod_ k  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364   E.wex 1506    e. wcel 2167   F/_wnfc 2326   A.wral 2475   E.wrex 2476   [_csb 3084    C_ wss 3157   ifcif 3561   class class class wbr 4033    |-> cmpt 4094   iotacio 5217   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922   0cc0 7879   1c1 7880    x. cmul 7884    <_ cle 8062   # cap 8608   NNcn 8990   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539    ~~> cli 11443   prod_cprod 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-recs 6363  df-frec 6449  df-seqfrec 10540  df-proddc 11716
This theorem is referenced by:  fprod2dlemstep  11787  fprodcom2fi  11791
  Copyright terms: Public domain W3C validator