ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcprod Unicode version

Theorem nfcprod 11518
Description: Bound-variable hypothesis builder for product: if  x is (effectively) not free in  A and  B, it is not free in  prod_ k  e.  A B. (Contributed by Scott Fenton, 1-Dec-2017.)
Hypotheses
Ref Expression
nfcprod.1  |-  F/_ x A
nfcprod.2  |-  F/_ x B
Assertion
Ref Expression
nfcprod  |-  F/_ x prod_ k  e.  A  B
Distinct variable group:    x, k
Allowed substitution hints:    A( x, k)    B( x, k)

Proof of Theorem nfcprod
Dummy variables  f  j  m  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proddc 11514 . 2  |-  prod_ k  e.  A  B  =  ( iota y ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
2 nfcv 2312 . . . . 5  |-  F/_ x ZZ
3 nfcprod.1 . . . . . . . 8  |-  F/_ x A
4 nfcv 2312 . . . . . . . 8  |-  F/_ x
( ZZ>= `  m )
53, 4nfss 3140 . . . . . . 7  |-  F/ x  A  C_  ( ZZ>= `  m
)
63nfcri 2306 . . . . . . . . 9  |-  F/ x  j  e.  A
76nfdc 1652 . . . . . . . 8  |-  F/ xDECID  j  e.  A
84, 7nfralxy 2508 . . . . . . 7  |-  F/ x A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A
95, 8nfan 1558 . . . . . 6  |-  F/ x
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
10 nfv 1521 . . . . . . . . . 10  |-  F/ x  z #  0
11 nfcv 2312 . . . . . . . . . . . 12  |-  F/_ x n
12 nfcv 2312 . . . . . . . . . . . 12  |-  F/_ x  x.
133nfcri 2306 . . . . . . . . . . . . . 14  |-  F/ x  k  e.  A
14 nfcprod.2 . . . . . . . . . . . . . 14  |-  F/_ x B
15 nfcv 2312 . . . . . . . . . . . . . 14  |-  F/_ x
1
1613, 14, 15nfif 3554 . . . . . . . . . . . . 13  |-  F/_ x if ( k  e.  A ,  B ,  1 )
172, 16nfmpt 4081 . . . . . . . . . . . 12  |-  F/_ x
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
1811, 12, 17nfseq 10411 . . . . . . . . . . 11  |-  F/_ x  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
19 nfcv 2312 . . . . . . . . . . 11  |-  F/_ x  ~~>
20 nfcv 2312 . . . . . . . . . . 11  |-  F/_ x
z
2118, 19, 20nfbr 4035 . . . . . . . . . 10  |-  F/ x  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z
2210, 21nfan 1558 . . . . . . . . 9  |-  F/ x
( z #  0  /\ 
seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )
2322nfex 1630 . . . . . . . 8  |-  F/ x E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )
244, 23nfrexxy 2509 . . . . . . 7  |-  F/ x E. n  e.  ( ZZ>=
`  m ) E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )
25 nfcv 2312 . . . . . . . . 9  |-  F/_ x m
2625, 12, 17nfseq 10411 . . . . . . . 8  |-  F/_ x  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
27 nfcv 2312 . . . . . . . 8  |-  F/_ x
y
2826, 19, 27nfbr 4035 . . . . . . 7  |-  F/ x  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y
2924, 28nfan 1558 . . . . . 6  |-  F/ x
( E. n  e.  ( ZZ>= `  m ) E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
309, 29nfan 1558 . . . . 5  |-  F/ x
( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
312, 30nfrexxy 2509 . . . 4  |-  F/ x E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )
32 nfcv 2312 . . . . 5  |-  F/_ x NN
33 nfcv 2312 . . . . . . . 8  |-  F/_ x
f
34 nfcv 2312 . . . . . . . 8  |-  F/_ x
( 1 ... m
)
3533, 34, 3nff1o 5440 . . . . . . 7  |-  F/ x  f : ( 1 ... m ) -1-1-onto-> A
36 nfv 1521 . . . . . . . . . . . 12  |-  F/ x  n  <_  m
37 nfcv 2312 . . . . . . . . . . . . 13  |-  F/_ x
( f `  n
)
3837, 14nfcsb 3086 . . . . . . . . . . . 12  |-  F/_ x [_ ( f `  n
)  /  k ]_ B
3936, 38, 15nfif 3554 . . . . . . . . . . 11  |-  F/_ x if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 )
4032, 39nfmpt 4081 . . . . . . . . . 10  |-  F/_ x
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) )
4115, 12, 40nfseq 10411 . . . . . . . . 9  |-  F/_ x  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) )
4241, 25nffv 5506 . . . . . . . 8  |-  F/_ x
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
)
4342nfeq2 2324 . . . . . . 7  |-  F/ x  y  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)
4435, 43nfan 1558 . . . . . 6  |-  F/ x
( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4544nfex 1630 . . . . 5  |-  F/ x E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4632, 45nfrexxy 2509 . . . 4  |-  F/ x E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4731, 46nfor 1567 . . 3  |-  F/ x
( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )
4847nfiotaw 5164 . 2  |-  F/_ x
( iota y ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. z ( z #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
491, 48nfcxfr 2309 1  |-  F/_ x prod_ k  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 703  DECID wdc 829    = wceq 1348   E.wex 1485    e. wcel 2141   F/_wnfc 2299   A.wral 2448   E.wrex 2449   [_csb 3049    C_ wss 3121   ifcif 3526   class class class wbr 3989    |-> cmpt 4050   iotacio 5158   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853   0cc0 7774   1c1 7775    x. cmul 7779    <_ cle 7955   # cap 8500   NNcn 8878   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965    seqcseq 10401    ~~> cli 11241   prod_cprod 11513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-recs 6284  df-frec 6370  df-seqfrec 10402  df-proddc 11514
This theorem is referenced by:  fprod2dlemstep  11585  fprodcom2fi  11589
  Copyright terms: Public domain W3C validator