Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfcprod | Unicode version |
Description: Bound-variable hypothesis builder for product: if is (effectively) not free in and , it is not free in . (Contributed by Scott Fenton, 1-Dec-2017.) |
Ref | Expression |
---|---|
nfcprod.1 | |
nfcprod.2 |
Ref | Expression |
---|---|
nfcprod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-proddc 11492 | . 2 DECID # | |
2 | nfcv 2308 | . . . . 5 | |
3 | nfcprod.1 | . . . . . . . 8 | |
4 | nfcv 2308 | . . . . . . . 8 | |
5 | 3, 4 | nfss 3135 | . . . . . . 7 |
6 | 3 | nfcri 2302 | . . . . . . . . 9 |
7 | 6 | nfdc 1647 | . . . . . . . 8 DECID |
8 | 4, 7 | nfralxy 2504 | . . . . . . 7 DECID |
9 | 5, 8 | nfan 1553 | . . . . . 6 DECID |
10 | nfv 1516 | . . . . . . . . . 10 # | |
11 | nfcv 2308 | . . . . . . . . . . . 12 | |
12 | nfcv 2308 | . . . . . . . . . . . 12 | |
13 | 3 | nfcri 2302 | . . . . . . . . . . . . . 14 |
14 | nfcprod.2 | . . . . . . . . . . . . . 14 | |
15 | nfcv 2308 | . . . . . . . . . . . . . 14 | |
16 | 13, 14, 15 | nfif 3548 | . . . . . . . . . . . . 13 |
17 | 2, 16 | nfmpt 4074 | . . . . . . . . . . . 12 |
18 | 11, 12, 17 | nfseq 10390 | . . . . . . . . . . 11 |
19 | nfcv 2308 | . . . . . . . . . . 11 | |
20 | nfcv 2308 | . . . . . . . . . . 11 | |
21 | 18, 19, 20 | nfbr 4028 | . . . . . . . . . 10 |
22 | 10, 21 | nfan 1553 | . . . . . . . . 9 # |
23 | 22 | nfex 1625 | . . . . . . . 8 # |
24 | 4, 23 | nfrexxy 2505 | . . . . . . 7 # |
25 | nfcv 2308 | . . . . . . . . 9 | |
26 | 25, 12, 17 | nfseq 10390 | . . . . . . . 8 |
27 | nfcv 2308 | . . . . . . . 8 | |
28 | 26, 19, 27 | nfbr 4028 | . . . . . . 7 |
29 | 24, 28 | nfan 1553 | . . . . . 6 # |
30 | 9, 29 | nfan 1553 | . . . . 5 DECID # |
31 | 2, 30 | nfrexxy 2505 | . . . 4 DECID # |
32 | nfcv 2308 | . . . . 5 | |
33 | nfcv 2308 | . . . . . . . 8 | |
34 | nfcv 2308 | . . . . . . . 8 | |
35 | 33, 34, 3 | nff1o 5430 | . . . . . . 7 |
36 | nfv 1516 | . . . . . . . . . . . 12 | |
37 | nfcv 2308 | . . . . . . . . . . . . 13 | |
38 | 37, 14 | nfcsb 3082 | . . . . . . . . . . . 12 |
39 | 36, 38, 15 | nfif 3548 | . . . . . . . . . . 11 |
40 | 32, 39 | nfmpt 4074 | . . . . . . . . . 10 |
41 | 15, 12, 40 | nfseq 10390 | . . . . . . . . 9 |
42 | 41, 25 | nffv 5496 | . . . . . . . 8 |
43 | 42 | nfeq2 2320 | . . . . . . 7 |
44 | 35, 43 | nfan 1553 | . . . . . 6 |
45 | 44 | nfex 1625 | . . . . 5 |
46 | 32, 45 | nfrexxy 2505 | . . . 4 |
47 | 31, 46 | nfor 1562 | . . 3 DECID # |
48 | 47 | nfiotaw 5157 | . 2 DECID # |
49 | 1, 48 | nfcxfr 2305 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wo 698 DECID wdc 824 wceq 1343 wex 1480 wcel 2136 wnfc 2295 wral 2444 wrex 2445 csb 3045 wss 3116 cif 3520 class class class wbr 3982 cmpt 4043 cio 5151 wf1o 5187 cfv 5188 (class class class)co 5842 cc0 7753 c1 7754 cmul 7758 cle 7934 # cap 8479 cn 8857 cz 9191 cuz 9466 cfz 9944 cseq 10380 cli 11219 cprod 11491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-seqfrec 10381 df-proddc 11492 |
This theorem is referenced by: fprod2dlemstep 11563 fprodcom2fi 11567 |
Copyright terms: Public domain | W3C validator |