| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfcprod | Unicode version | ||
| Description: Bound-variable hypothesis
builder for product: if  | 
| Ref | Expression | 
|---|---|
| nfcprod.1 | 
 | 
| nfcprod.2 | 
 | 
| Ref | Expression | 
|---|---|
| nfcprod | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-proddc 11716 | 
. 2
 | |
| 2 | nfcv 2339 | 
. . . . 5
 | |
| 3 | nfcprod.1 | 
. . . . . . . 8
 | |
| 4 | nfcv 2339 | 
. . . . . . . 8
 | |
| 5 | 3, 4 | nfss 3176 | 
. . . . . . 7
 | 
| 6 | 3 | nfcri 2333 | 
. . . . . . . . 9
 | 
| 7 | 6 | nfdc 1673 | 
. . . . . . . 8
 | 
| 8 | 4, 7 | nfralxy 2535 | 
. . . . . . 7
 | 
| 9 | 5, 8 | nfan 1579 | 
. . . . . 6
 | 
| 10 | nfv 1542 | 
. . . . . . . . . 10
 | |
| 11 | nfcv 2339 | 
. . . . . . . . . . . 12
 | |
| 12 | nfcv 2339 | 
. . . . . . . . . . . 12
 | |
| 13 | 3 | nfcri 2333 | 
. . . . . . . . . . . . . 14
 | 
| 14 | nfcprod.2 | 
. . . . . . . . . . . . . 14
 | |
| 15 | nfcv 2339 | 
. . . . . . . . . . . . . 14
 | |
| 16 | 13, 14, 15 | nfif 3589 | 
. . . . . . . . . . . . 13
 | 
| 17 | 2, 16 | nfmpt 4125 | 
. . . . . . . . . . . 12
 | 
| 18 | 11, 12, 17 | nfseq 10549 | 
. . . . . . . . . . 11
 | 
| 19 | nfcv 2339 | 
. . . . . . . . . . 11
 | |
| 20 | nfcv 2339 | 
. . . . . . . . . . 11
 | |
| 21 | 18, 19, 20 | nfbr 4079 | 
. . . . . . . . . 10
 | 
| 22 | 10, 21 | nfan 1579 | 
. . . . . . . . 9
 | 
| 23 | 22 | nfex 1651 | 
. . . . . . . 8
 | 
| 24 | 4, 23 | nfrexw 2536 | 
. . . . . . 7
 | 
| 25 | nfcv 2339 | 
. . . . . . . . 9
 | |
| 26 | 25, 12, 17 | nfseq 10549 | 
. . . . . . . 8
 | 
| 27 | nfcv 2339 | 
. . . . . . . 8
 | |
| 28 | 26, 19, 27 | nfbr 4079 | 
. . . . . . 7
 | 
| 29 | 24, 28 | nfan 1579 | 
. . . . . 6
 | 
| 30 | 9, 29 | nfan 1579 | 
. . . . 5
 | 
| 31 | 2, 30 | nfrexw 2536 | 
. . . 4
 | 
| 32 | nfcv 2339 | 
. . . . 5
 | |
| 33 | nfcv 2339 | 
. . . . . . . 8
 | |
| 34 | nfcv 2339 | 
. . . . . . . 8
 | |
| 35 | 33, 34, 3 | nff1o 5502 | 
. . . . . . 7
 | 
| 36 | nfv 1542 | 
. . . . . . . . . . . 12
 | |
| 37 | nfcv 2339 | 
. . . . . . . . . . . . 13
 | |
| 38 | 37, 14 | nfcsb 3122 | 
. . . . . . . . . . . 12
 | 
| 39 | 36, 38, 15 | nfif 3589 | 
. . . . . . . . . . 11
 | 
| 40 | 32, 39 | nfmpt 4125 | 
. . . . . . . . . 10
 | 
| 41 | 15, 12, 40 | nfseq 10549 | 
. . . . . . . . 9
 | 
| 42 | 41, 25 | nffv 5568 | 
. . . . . . . 8
 | 
| 43 | 42 | nfeq2 2351 | 
. . . . . . 7
 | 
| 44 | 35, 43 | nfan 1579 | 
. . . . . 6
 | 
| 45 | 44 | nfex 1651 | 
. . . . 5
 | 
| 46 | 32, 45 | nfrexw 2536 | 
. . . 4
 | 
| 47 | 31, 46 | nfor 1588 | 
. . 3
 | 
| 48 | 47 | nfiotaw 5223 | 
. 2
 | 
| 49 | 1, 48 | nfcxfr 2336 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-seqfrec 10540 df-proddc 11716 | 
| This theorem is referenced by: fprod2dlemstep 11787 fprodcom2fi 11791 | 
| Copyright terms: Public domain | W3C validator |