Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcfi | Unicode version |
Description: Decidability of a family of propositions indexed by a finite set. (Contributed by Jim Kingdon, 30-Sep-2024.) |
Ref | Expression |
---|---|
dcfi | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2661 | . . 3 | |
2 | 1 | dcbid 828 | . 2 DECID DECID |
3 | raleq 2661 | . . 3 | |
4 | 3 | dcbid 828 | . 2 DECID DECID |
5 | raleq 2661 | . . 3 | |
6 | 5 | dcbid 828 | . 2 DECID DECID |
7 | raleq 2661 | . . 3 | |
8 | 7 | dcbid 828 | . 2 DECID DECID |
9 | ral0 3510 | . . . . 5 | |
10 | 9 | orci 721 | . . . 4 |
11 | df-dc 825 | . . . 4 DECID | |
12 | 10, 11 | mpbir 145 | . . 3 DECID |
13 | 12 | a1i 9 | . 2 DECID DECID |
14 | simpr 109 | . . . . 5 DECID DECID DECID | |
15 | simplrr 526 | . . . . . . . 8 DECID DECID | |
16 | 15 | eldifad 3127 | . . . . . . 7 DECID DECID |
17 | simp-4r 532 | . . . . . . 7 DECID DECID DECID | |
18 | nfsbc1v 2969 | . . . . . . . . 9 | |
19 | 18 | nfdc 1647 | . . . . . . . 8 DECID |
20 | sbceq1a 2960 | . . . . . . . . 9 | |
21 | 20 | dcbid 828 | . . . . . . . 8 DECID DECID |
22 | 19, 21 | rspc 2824 | . . . . . . 7 DECID DECID |
23 | 16, 17, 22 | sylc 62 | . . . . . 6 DECID DECID DECID |
24 | ralsnsg 3613 | . . . . . . . 8 | |
25 | 24 | elv 2730 | . . . . . . 7 |
26 | 25 | dcbii 830 | . . . . . 6 DECID DECID |
27 | 23, 26 | sylibr 133 | . . . . 5 DECID DECID DECID |
28 | dcan2 924 | . . . . 5 DECID DECID DECID | |
29 | 14, 27, 28 | sylc 62 | . . . 4 DECID DECID DECID |
30 | ralunb 3303 | . . . . 5 | |
31 | 30 | dcbii 830 | . . . 4 DECID DECID |
32 | 29, 31 | sylibr 133 | . . 3 DECID DECID DECID |
33 | 32 | ex 114 | . 2 DECID DECID DECID |
34 | simpl 108 | . 2 DECID | |
35 | 2, 4, 6, 8, 13, 33, 34 | findcard2sd 6858 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 wceq 1343 wcel 2136 wral 2444 cvv 2726 wsbc 2951 cdif 3113 cun 3114 wss 3116 c0 3409 csn 3576 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: prmdc 12062 |
Copyright terms: Public domain | W3C validator |