ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcfi Unicode version

Theorem dcfi 6982
Description: Decidability of a family of propositions indexed by a finite set. (Contributed by Jim Kingdon, 30-Sep-2024.)
Assertion
Ref Expression
dcfi  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  -> DECID  A. x  e.  A  ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem dcfi
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2673 . . 3  |-  ( w  =  (/)  ->  ( A. x  e.  w  ph  <->  A. x  e.  (/)  ph )
)
21dcbid 838 . 2  |-  ( w  =  (/)  ->  (DECID  A. x  e.  w  ph  <-> DECID  A. x  e.  (/)  ph ) )
3 raleq 2673 . . 3  |-  ( w  =  y  ->  ( A. x  e.  w  ph  <->  A. x  e.  y  ph ) )
43dcbid 838 . 2  |-  ( w  =  y  ->  (DECID  A. x  e.  w  ph  <-> DECID  A. x  e.  y  ph ) )
5 raleq 2673 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A. x  e.  w  ph  <->  A. x  e.  ( y  u.  {
z } ) ph ) )
65dcbid 838 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  (DECID 
A. x  e.  w  ph  <-> DECID  A. x  e.  ( y  u.  {
z } ) ph ) )
7 raleq 2673 . . 3  |-  ( w  =  A  ->  ( A. x  e.  w  ph  <->  A. x  e.  A  ph ) )
87dcbid 838 . 2  |-  ( w  =  A  ->  (DECID  A. x  e.  w  ph  <-> DECID  A. x  e.  A  ph ) )
9 ral0 3526 . . . . 5  |-  A. x  e.  (/)  ph
109orci 731 . . . 4  |-  ( A. x  e.  (/)  ph  \/  -.  A. x  e.  (/)  ph )
11 df-dc 835 . . . 4  |-  (DECID  A. x  e.  (/)  ph  <->  ( A. x  e.  (/)  ph  \/  -.  A. x  e.  (/)  ph )
)
1210, 11mpbir 146 . . 3  |- DECID  A. x  e.  (/)  ph
1312a1i 9 . 2  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  -> DECID  A. x  e.  (/)  ph )
14 simpr 110 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  A. x  e.  y 
ph )  -> DECID  A. x  e.  y 
ph )
15 simplrr 536 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  A. x  e.  y 
ph )  ->  z  e.  ( A  \  y
) )
1615eldifad 3142 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  A. x  e.  y 
ph )  ->  z  e.  A )
17 simp-4r 542 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  A. x  e.  y 
ph )  ->  A. x  e.  A DECID  ph )
18 nfsbc1v 2983 . . . . . . . . 9  |-  F/ x [. z  /  x ]. ph
1918nfdc 1659 . . . . . . . 8  |-  F/ xDECID  [. z  /  x ]. ph
20 sbceq1a 2974 . . . . . . . . 9  |-  ( x  =  z  ->  ( ph 
<-> 
[. z  /  x ]. ph ) )
2120dcbid 838 . . . . . . . 8  |-  ( x  =  z  ->  (DECID  ph  <-> DECID  [. z  /  x ]. ph ) )
2219, 21rspc 2837 . . . . . . 7  |-  ( z  e.  A  ->  ( A. x  e.  A DECID  ph  -> DECID  [. z  /  x ]. ph )
)
2316, 17, 22sylc 62 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  A. x  e.  y 
ph )  -> DECID  [. z  /  x ]. ph )
24 ralsnsg 3631 . . . . . . . 8  |-  ( z  e.  _V  ->  ( A. x  e.  { z } ph  <->  [. z  /  x ]. ph ) )
2524elv 2743 . . . . . . 7  |-  ( A. x  e.  { z } ph  <->  [. z  /  x ]. ph )
2625dcbii 840 . . . . . 6  |-  (DECID  A. x  e.  { z } ph  <-> DECID  [. z  /  x ]. ph )
2723, 26sylibr 134 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  A. x  e.  y 
ph )  -> DECID  A. x  e.  {
z } ph )
28 dcan2 934 . . . . 5  |-  (DECID  A. x  e.  y  ph  ->  (DECID  A. x  e.  { z } ph  -> DECID  ( A. x  e.  y  ph  /\  A. x  e.  { z } ph ) ) )
2914, 27, 28sylc 62 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  A. x  e.  y 
ph )  -> DECID  ( A. x  e.  y  ph  /\  A. x  e.  { z } ph ) )
30 ralunb 3318 . . . . 5  |-  ( A. x  e.  ( y  u.  { z } )
ph 
<->  ( A. x  e.  y  ph  /\  A. x  e.  { z } ph ) )
3130dcbii 840 . . . 4  |-  (DECID  A. x  e.  ( y  u.  {
z } ) ph  <-> DECID  ( A. x  e.  y  ph  /\ 
A. x  e.  {
z } ph )
)
3229, 31sylibr 134 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  A. x  e.  y 
ph )  -> DECID  A. x  e.  ( y  u.  { z } ) ph )
3332ex 115 . 2  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  (DECID 
A. x  e.  y 
ph  -> DECID  A. x  e.  (
y  u.  { z } ) ph )
)
34 simpl 109 . 2  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  ->  A  e.  Fin )
352, 4, 6, 8, 13, 33, 34findcard2sd 6894 1  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  -> DECID  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2739   [.wsbc 2964    \ cdif 3128    u. cun 3129    C_ wss 3131   (/)c0 3424   {csn 3594   Fincfn 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-er 6537  df-en 6743  df-fin 6745
This theorem is referenced by:  prmdc  12132
  Copyright terms: Public domain W3C validator