ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcprod1 Unicode version

Theorem nfcprod1 11697
Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
nfcprod1.1  |-  F/_ k A
Assertion
Ref Expression
nfcprod1  |-  F/_ k prod_ k  e.  A  B
Distinct variable group:    A, k
Allowed substitution hint:    B( k)

Proof of Theorem nfcprod1
Dummy variables  f  j  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proddc 11694 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
2 nfcv 2336 . . . . 5  |-  F/_ k ZZ
3 nfcprod1.1 . . . . . . . 8  |-  F/_ k A
4 nfcv 2336 . . . . . . . 8  |-  F/_ k
( ZZ>= `  m )
53, 4nfss 3172 . . . . . . 7  |-  F/ k  A  C_  ( ZZ>= `  m )
63nfcri 2330 . . . . . . . . 9  |-  F/ k  j  e.  A
76nfdc 1670 . . . . . . . 8  |-  F/ kDECID  j  e.  A
84, 7nfralxy 2532 . . . . . . 7  |-  F/ k A. j  e.  (
ZZ>= `  m )DECID  j  e.  A
95, 8nfan 1576 . . . . . 6  |-  F/ k ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
10 nfv 1539 . . . . . . . . . 10  |-  F/ k  y #  0
11 nfcv 2336 . . . . . . . . . . . 12  |-  F/_ k
n
12 nfcv 2336 . . . . . . . . . . . 12  |-  F/_ k  x.
13 nfmpt1 4122 . . . . . . . . . . . 12  |-  F/_ k
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
1411, 12, 13nfseq 10528 . . . . . . . . . . 11  |-  F/_ k  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
15 nfcv 2336 . . . . . . . . . . 11  |-  F/_ k  ~~>
16 nfcv 2336 . . . . . . . . . . 11  |-  F/_ k
y
1714, 15, 16nfbr 4075 . . . . . . . . . 10  |-  F/ k  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y
1810, 17nfan 1576 . . . . . . . . 9  |-  F/ k ( y #  0  /\ 
seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
1918nfex 1648 . . . . . . . 8  |-  F/ k E. y ( y #  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
204, 19nfrexw 2533 . . . . . . 7  |-  F/ k E. n  e.  (
ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
21 nfcv 2336 . . . . . . . . 9  |-  F/_ k
m
2221, 12, 13nfseq 10528 . . . . . . . 8  |-  F/_ k  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
23 nfcv 2336 . . . . . . . 8  |-  F/_ k
x
2422, 15, 23nfbr 4075 . . . . . . 7  |-  F/ k  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x
2520, 24nfan 1576 . . . . . 6  |-  F/ k ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )
269, 25nfan 1576 . . . . 5  |-  F/ k ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )
272, 26nfrexw 2533 . . . 4  |-  F/ k E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )
28 nfcv 2336 . . . . 5  |-  F/_ k NN
29 nfcv 2336 . . . . . . . 8  |-  F/_ k
f
30 nfcv 2336 . . . . . . . 8  |-  F/_ k
( 1 ... m
)
3129, 30, 3nff1o 5498 . . . . . . 7  |-  F/ k  f : ( 1 ... m ) -1-1-onto-> A
32 nfcv 2336 . . . . . . . . . 10  |-  F/_ k
1
33 nfv 1539 . . . . . . . . . . . 12  |-  F/ k  n  <_  m
34 nfcsb1v 3113 . . . . . . . . . . . 12  |-  F/_ k [_ ( f `  n
)  /  k ]_ B
3533, 34, 32nfif 3585 . . . . . . . . . . 11  |-  F/_ k if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 )
3628, 35nfmpt 4121 . . . . . . . . . 10  |-  F/_ k
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) )
3732, 12, 36nfseq 10528 . . . . . . . . 9  |-  F/_ k  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) )
3837, 21nffv 5564 . . . . . . . 8  |-  F/_ k
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
)
3938nfeq2 2348 . . . . . . 7  |-  F/ k  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)
4031, 39nfan 1576 . . . . . 6  |-  F/ k ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4140nfex 1648 . . . . 5  |-  F/ k E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4228, 41nfrexw 2533 . . . 4  |-  F/ k E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4327, 42nfor 1585 . . 3  |-  F/ k ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )
4443nfiotaw 5219 . 2  |-  F/_ k
( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
451, 44nfcxfr 2333 1  |-  F/_ k prod_ k  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364   E.wex 1503    e. wcel 2164   F/_wnfc 2323   A.wral 2472   E.wrex 2473   [_csb 3080    C_ wss 3153   ifcif 3557   class class class wbr 4029    |-> cmpt 4090   iotacio 5213   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918   0cc0 7872   1c1 7873    x. cmul 7877    <_ cle 8055   # cap 8600   NNcn 8982   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074    seqcseq 10518    ~~> cli 11421   prod_cprod 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-seqfrec 10519  df-proddc 11694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator