Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfcprod1 | Unicode version |
Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
nfcprod1.1 |
Ref | Expression |
---|---|
nfcprod1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-proddc 11514 | . 2 DECID # | |
2 | nfcv 2312 | . . . . 5 | |
3 | nfcprod1.1 | . . . . . . . 8 | |
4 | nfcv 2312 | . . . . . . . 8 | |
5 | 3, 4 | nfss 3140 | . . . . . . 7 |
6 | 3 | nfcri 2306 | . . . . . . . . 9 |
7 | 6 | nfdc 1652 | . . . . . . . 8 DECID |
8 | 4, 7 | nfralxy 2508 | . . . . . . 7 DECID |
9 | 5, 8 | nfan 1558 | . . . . . 6 DECID |
10 | nfv 1521 | . . . . . . . . . 10 # | |
11 | nfcv 2312 | . . . . . . . . . . . 12 | |
12 | nfcv 2312 | . . . . . . . . . . . 12 | |
13 | nfmpt1 4082 | . . . . . . . . . . . 12 | |
14 | 11, 12, 13 | nfseq 10411 | . . . . . . . . . . 11 |
15 | nfcv 2312 | . . . . . . . . . . 11 | |
16 | nfcv 2312 | . . . . . . . . . . 11 | |
17 | 14, 15, 16 | nfbr 4035 | . . . . . . . . . 10 |
18 | 10, 17 | nfan 1558 | . . . . . . . . 9 # |
19 | 18 | nfex 1630 | . . . . . . . 8 # |
20 | 4, 19 | nfrexxy 2509 | . . . . . . 7 # |
21 | nfcv 2312 | . . . . . . . . 9 | |
22 | 21, 12, 13 | nfseq 10411 | . . . . . . . 8 |
23 | nfcv 2312 | . . . . . . . 8 | |
24 | 22, 15, 23 | nfbr 4035 | . . . . . . 7 |
25 | 20, 24 | nfan 1558 | . . . . . 6 # |
26 | 9, 25 | nfan 1558 | . . . . 5 DECID # |
27 | 2, 26 | nfrexxy 2509 | . . . 4 DECID # |
28 | nfcv 2312 | . . . . 5 | |
29 | nfcv 2312 | . . . . . . . 8 | |
30 | nfcv 2312 | . . . . . . . 8 | |
31 | 29, 30, 3 | nff1o 5440 | . . . . . . 7 |
32 | nfcv 2312 | . . . . . . . . . 10 | |
33 | nfv 1521 | . . . . . . . . . . . 12 | |
34 | nfcsb1v 3082 | . . . . . . . . . . . 12 | |
35 | 33, 34, 32 | nfif 3554 | . . . . . . . . . . 11 |
36 | 28, 35 | nfmpt 4081 | . . . . . . . . . 10 |
37 | 32, 12, 36 | nfseq 10411 | . . . . . . . . 9 |
38 | 37, 21 | nffv 5506 | . . . . . . . 8 |
39 | 38 | nfeq2 2324 | . . . . . . 7 |
40 | 31, 39 | nfan 1558 | . . . . . 6 |
41 | 40 | nfex 1630 | . . . . 5 |
42 | 28, 41 | nfrexxy 2509 | . . . 4 |
43 | 27, 42 | nfor 1567 | . . 3 DECID # |
44 | 43 | nfiotaw 5164 | . 2 DECID # |
45 | 1, 44 | nfcxfr 2309 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wo 703 DECID wdc 829 wceq 1348 wex 1485 wcel 2141 wnfc 2299 wral 2448 wrex 2449 csb 3049 wss 3121 cif 3526 class class class wbr 3989 cmpt 4050 cio 5158 wf1o 5197 cfv 5198 (class class class)co 5853 cc0 7774 c1 7775 cmul 7779 cle 7955 # cap 8500 cn 8878 cz 9212 cuz 9487 cfz 9965 cseq 10401 cli 11241 cprod 11513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-recs 6284 df-frec 6370 df-seqfrec 10402 df-proddc 11514 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |