ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcprod1 Unicode version

Theorem nfcprod1 11495
Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
nfcprod1.1  |-  F/_ k A
Assertion
Ref Expression
nfcprod1  |-  F/_ k prod_ k  e.  A  B
Distinct variable group:    A, k
Allowed substitution hint:    B( k)

Proof of Theorem nfcprod1
Dummy variables  f  j  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proddc 11492 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
2 nfcv 2308 . . . . 5  |-  F/_ k ZZ
3 nfcprod1.1 . . . . . . . 8  |-  F/_ k A
4 nfcv 2308 . . . . . . . 8  |-  F/_ k
( ZZ>= `  m )
53, 4nfss 3135 . . . . . . 7  |-  F/ k  A  C_  ( ZZ>= `  m )
63nfcri 2302 . . . . . . . . 9  |-  F/ k  j  e.  A
76nfdc 1647 . . . . . . . 8  |-  F/ kDECID  j  e.  A
84, 7nfralxy 2504 . . . . . . 7  |-  F/ k A. j  e.  (
ZZ>= `  m )DECID  j  e.  A
95, 8nfan 1553 . . . . . 6  |-  F/ k ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
10 nfv 1516 . . . . . . . . . 10  |-  F/ k  y #  0
11 nfcv 2308 . . . . . . . . . . . 12  |-  F/_ k
n
12 nfcv 2308 . . . . . . . . . . . 12  |-  F/_ k  x.
13 nfmpt1 4075 . . . . . . . . . . . 12  |-  F/_ k
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
1411, 12, 13nfseq 10390 . . . . . . . . . . 11  |-  F/_ k  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
15 nfcv 2308 . . . . . . . . . . 11  |-  F/_ k  ~~>
16 nfcv 2308 . . . . . . . . . . 11  |-  F/_ k
y
1714, 15, 16nfbr 4028 . . . . . . . . . 10  |-  F/ k  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y
1810, 17nfan 1553 . . . . . . . . 9  |-  F/ k ( y #  0  /\ 
seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
1918nfex 1625 . . . . . . . 8  |-  F/ k E. y ( y #  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
204, 19nfrexxy 2505 . . . . . . 7  |-  F/ k E. n  e.  (
ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
21 nfcv 2308 . . . . . . . . 9  |-  F/_ k
m
2221, 12, 13nfseq 10390 . . . . . . . 8  |-  F/_ k  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
23 nfcv 2308 . . . . . . . 8  |-  F/_ k
x
2422, 15, 23nfbr 4028 . . . . . . 7  |-  F/ k  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x
2520, 24nfan 1553 . . . . . 6  |-  F/ k ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )
269, 25nfan 1553 . . . . 5  |-  F/ k ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )
272, 26nfrexxy 2505 . . . 4  |-  F/ k E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )
28 nfcv 2308 . . . . 5  |-  F/_ k NN
29 nfcv 2308 . . . . . . . 8  |-  F/_ k
f
30 nfcv 2308 . . . . . . . 8  |-  F/_ k
( 1 ... m
)
3129, 30, 3nff1o 5430 . . . . . . 7  |-  F/ k  f : ( 1 ... m ) -1-1-onto-> A
32 nfcv 2308 . . . . . . . . . 10  |-  F/_ k
1
33 nfv 1516 . . . . . . . . . . . 12  |-  F/ k  n  <_  m
34 nfcsb1v 3078 . . . . . . . . . . . 12  |-  F/_ k [_ ( f `  n
)  /  k ]_ B
3533, 34, 32nfif 3548 . . . . . . . . . . 11  |-  F/_ k if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 )
3628, 35nfmpt 4074 . . . . . . . . . 10  |-  F/_ k
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) )
3732, 12, 36nfseq 10390 . . . . . . . . 9  |-  F/_ k  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) )
3837, 21nffv 5496 . . . . . . . 8  |-  F/_ k
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
)
3938nfeq2 2320 . . . . . . 7  |-  F/ k  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)
4031, 39nfan 1553 . . . . . 6  |-  F/ k ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4140nfex 1625 . . . . 5  |-  F/ k E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4228, 41nfrexxy 2505 . . . 4  |-  F/ k E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4327, 42nfor 1562 . . 3  |-  F/ k ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )
4443nfiotaw 5157 . 2  |-  F/_ k
( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
451, 44nfcxfr 2305 1  |-  F/_ k prod_ k  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 698  DECID wdc 824    = wceq 1343   E.wex 1480    e. wcel 2136   F/_wnfc 2295   A.wral 2444   E.wrex 2445   [_csb 3045    C_ wss 3116   ifcif 3520   class class class wbr 3982    |-> cmpt 4043   iotacio 5151   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842   0cc0 7753   1c1 7754    x. cmul 7758    <_ cle 7934   # cap 8479   NNcn 8857   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944    seqcseq 10380    ~~> cli 11219   prod_cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-recs 6273  df-frec 6359  df-seqfrec 10381  df-proddc 11492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator