| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcprod1 | Unicode version | ||
| Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfcprod1.1 |
|
| Ref | Expression |
|---|---|
| nfcprod1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-proddc 11977 |
. 2
| |
| 2 | nfcv 2350 |
. . . . 5
| |
| 3 | nfcprod1.1 |
. . . . . . . 8
| |
| 4 | nfcv 2350 |
. . . . . . . 8
| |
| 5 | 3, 4 | nfss 3194 |
. . . . . . 7
|
| 6 | 3 | nfcri 2344 |
. . . . . . . . 9
|
| 7 | 6 | nfdc 1683 |
. . . . . . . 8
|
| 8 | 4, 7 | nfralxy 2546 |
. . . . . . 7
|
| 9 | 5, 8 | nfan 1589 |
. . . . . 6
|
| 10 | nfv 1552 |
. . . . . . . . . 10
| |
| 11 | nfcv 2350 |
. . . . . . . . . . . 12
| |
| 12 | nfcv 2350 |
. . . . . . . . . . . 12
| |
| 13 | nfmpt1 4153 |
. . . . . . . . . . . 12
| |
| 14 | 11, 12, 13 | nfseq 10639 |
. . . . . . . . . . 11
|
| 15 | nfcv 2350 |
. . . . . . . . . . 11
| |
| 16 | nfcv 2350 |
. . . . . . . . . . 11
| |
| 17 | 14, 15, 16 | nfbr 4106 |
. . . . . . . . . 10
|
| 18 | 10, 17 | nfan 1589 |
. . . . . . . . 9
|
| 19 | 18 | nfex 1661 |
. . . . . . . 8
|
| 20 | 4, 19 | nfrexw 2547 |
. . . . . . 7
|
| 21 | nfcv 2350 |
. . . . . . . . 9
| |
| 22 | 21, 12, 13 | nfseq 10639 |
. . . . . . . 8
|
| 23 | nfcv 2350 |
. . . . . . . 8
| |
| 24 | 22, 15, 23 | nfbr 4106 |
. . . . . . 7
|
| 25 | 20, 24 | nfan 1589 |
. . . . . 6
|
| 26 | 9, 25 | nfan 1589 |
. . . . 5
|
| 27 | 2, 26 | nfrexw 2547 |
. . . 4
|
| 28 | nfcv 2350 |
. . . . 5
| |
| 29 | nfcv 2350 |
. . . . . . . 8
| |
| 30 | nfcv 2350 |
. . . . . . . 8
| |
| 31 | 29, 30, 3 | nff1o 5542 |
. . . . . . 7
|
| 32 | nfcv 2350 |
. . . . . . . . . 10
| |
| 33 | nfv 1552 |
. . . . . . . . . . . 12
| |
| 34 | nfcsb1v 3134 |
. . . . . . . . . . . 12
| |
| 35 | 33, 34, 32 | nfif 3608 |
. . . . . . . . . . 11
|
| 36 | 28, 35 | nfmpt 4152 |
. . . . . . . . . 10
|
| 37 | 32, 12, 36 | nfseq 10639 |
. . . . . . . . 9
|
| 38 | 37, 21 | nffv 5609 |
. . . . . . . 8
|
| 39 | 38 | nfeq2 2362 |
. . . . . . 7
|
| 40 | 31, 39 | nfan 1589 |
. . . . . 6
|
| 41 | 40 | nfex 1661 |
. . . . 5
|
| 42 | 28, 41 | nfrexw 2547 |
. . . 4
|
| 43 | 27, 42 | nfor 1598 |
. . 3
|
| 44 | 43 | nfiotaw 5255 |
. 2
|
| 45 | 1, 44 | nfcxfr 2347 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-recs 6414 df-frec 6500 df-seqfrec 10630 df-proddc 11977 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |