ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcprod1 Unicode version

Theorem nfcprod1 11517
Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
nfcprod1.1  |-  F/_ k A
Assertion
Ref Expression
nfcprod1  |-  F/_ k prod_ k  e.  A  B
Distinct variable group:    A, k
Allowed substitution hint:    B( k)

Proof of Theorem nfcprod1
Dummy variables  f  j  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proddc 11514 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
2 nfcv 2312 . . . . 5  |-  F/_ k ZZ
3 nfcprod1.1 . . . . . . . 8  |-  F/_ k A
4 nfcv 2312 . . . . . . . 8  |-  F/_ k
( ZZ>= `  m )
53, 4nfss 3140 . . . . . . 7  |-  F/ k  A  C_  ( ZZ>= `  m )
63nfcri 2306 . . . . . . . . 9  |-  F/ k  j  e.  A
76nfdc 1652 . . . . . . . 8  |-  F/ kDECID  j  e.  A
84, 7nfralxy 2508 . . . . . . 7  |-  F/ k A. j  e.  (
ZZ>= `  m )DECID  j  e.  A
95, 8nfan 1558 . . . . . 6  |-  F/ k ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
10 nfv 1521 . . . . . . . . . 10  |-  F/ k  y #  0
11 nfcv 2312 . . . . . . . . . . . 12  |-  F/_ k
n
12 nfcv 2312 . . . . . . . . . . . 12  |-  F/_ k  x.
13 nfmpt1 4082 . . . . . . . . . . . 12  |-  F/_ k
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
1411, 12, 13nfseq 10411 . . . . . . . . . . 11  |-  F/_ k  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
15 nfcv 2312 . . . . . . . . . . 11  |-  F/_ k  ~~>
16 nfcv 2312 . . . . . . . . . . 11  |-  F/_ k
y
1714, 15, 16nfbr 4035 . . . . . . . . . 10  |-  F/ k  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y
1810, 17nfan 1558 . . . . . . . . 9  |-  F/ k ( y #  0  /\ 
seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
1918nfex 1630 . . . . . . . 8  |-  F/ k E. y ( y #  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
204, 19nfrexxy 2509 . . . . . . 7  |-  F/ k E. n  e.  (
ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
21 nfcv 2312 . . . . . . . . 9  |-  F/_ k
m
2221, 12, 13nfseq 10411 . . . . . . . 8  |-  F/_ k  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
23 nfcv 2312 . . . . . . . 8  |-  F/_ k
x
2422, 15, 23nfbr 4035 . . . . . . 7  |-  F/ k  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x
2520, 24nfan 1558 . . . . . 6  |-  F/ k ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )
269, 25nfan 1558 . . . . 5  |-  F/ k ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )
272, 26nfrexxy 2509 . . . 4  |-  F/ k E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )
28 nfcv 2312 . . . . 5  |-  F/_ k NN
29 nfcv 2312 . . . . . . . 8  |-  F/_ k
f
30 nfcv 2312 . . . . . . . 8  |-  F/_ k
( 1 ... m
)
3129, 30, 3nff1o 5440 . . . . . . 7  |-  F/ k  f : ( 1 ... m ) -1-1-onto-> A
32 nfcv 2312 . . . . . . . . . 10  |-  F/_ k
1
33 nfv 1521 . . . . . . . . . . . 12  |-  F/ k  n  <_  m
34 nfcsb1v 3082 . . . . . . . . . . . 12  |-  F/_ k [_ ( f `  n
)  /  k ]_ B
3533, 34, 32nfif 3554 . . . . . . . . . . 11  |-  F/_ k if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 )
3628, 35nfmpt 4081 . . . . . . . . . 10  |-  F/_ k
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) )
3732, 12, 36nfseq 10411 . . . . . . . . 9  |-  F/_ k  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) )
3837, 21nffv 5506 . . . . . . . 8  |-  F/_ k
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
)
3938nfeq2 2324 . . . . . . 7  |-  F/ k  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)
4031, 39nfan 1558 . . . . . 6  |-  F/ k ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4140nfex 1630 . . . . 5  |-  F/ k E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4228, 41nfrexxy 2509 . . . 4  |-  F/ k E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4327, 42nfor 1567 . . 3  |-  F/ k ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )
4443nfiotaw 5164 . 2  |-  F/_ k
( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
451, 44nfcxfr 2309 1  |-  F/_ k prod_ k  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 703  DECID wdc 829    = wceq 1348   E.wex 1485    e. wcel 2141   F/_wnfc 2299   A.wral 2448   E.wrex 2449   [_csb 3049    C_ wss 3121   ifcif 3526   class class class wbr 3989    |-> cmpt 4050   iotacio 5158   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853   0cc0 7774   1c1 7775    x. cmul 7779    <_ cle 7955   # cap 8500   NNcn 8878   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965    seqcseq 10401    ~~> cli 11241   prod_cprod 11513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-recs 6284  df-frec 6370  df-seqfrec 10402  df-proddc 11514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator