| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcprod1 | Unicode version | ||
| Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfcprod1.1 |
|
| Ref | Expression |
|---|---|
| nfcprod1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-proddc 12062 |
. 2
| |
| 2 | nfcv 2372 |
. . . . 5
| |
| 3 | nfcprod1.1 |
. . . . . . . 8
| |
| 4 | nfcv 2372 |
. . . . . . . 8
| |
| 5 | 3, 4 | nfss 3217 |
. . . . . . 7
|
| 6 | 3 | nfcri 2366 |
. . . . . . . . 9
|
| 7 | 6 | nfdc 1705 |
. . . . . . . 8
|
| 8 | 4, 7 | nfralxy 2568 |
. . . . . . 7
|
| 9 | 5, 8 | nfan 1611 |
. . . . . 6
|
| 10 | nfv 1574 |
. . . . . . . . . 10
| |
| 11 | nfcv 2372 |
. . . . . . . . . . . 12
| |
| 12 | nfcv 2372 |
. . . . . . . . . . . 12
| |
| 13 | nfmpt1 4177 |
. . . . . . . . . . . 12
| |
| 14 | 11, 12, 13 | nfseq 10679 |
. . . . . . . . . . 11
|
| 15 | nfcv 2372 |
. . . . . . . . . . 11
| |
| 16 | nfcv 2372 |
. . . . . . . . . . 11
| |
| 17 | 14, 15, 16 | nfbr 4130 |
. . . . . . . . . 10
|
| 18 | 10, 17 | nfan 1611 |
. . . . . . . . 9
|
| 19 | 18 | nfex 1683 |
. . . . . . . 8
|
| 20 | 4, 19 | nfrexw 2569 |
. . . . . . 7
|
| 21 | nfcv 2372 |
. . . . . . . . 9
| |
| 22 | 21, 12, 13 | nfseq 10679 |
. . . . . . . 8
|
| 23 | nfcv 2372 |
. . . . . . . 8
| |
| 24 | 22, 15, 23 | nfbr 4130 |
. . . . . . 7
|
| 25 | 20, 24 | nfan 1611 |
. . . . . 6
|
| 26 | 9, 25 | nfan 1611 |
. . . . 5
|
| 27 | 2, 26 | nfrexw 2569 |
. . . 4
|
| 28 | nfcv 2372 |
. . . . 5
| |
| 29 | nfcv 2372 |
. . . . . . . 8
| |
| 30 | nfcv 2372 |
. . . . . . . 8
| |
| 31 | 29, 30, 3 | nff1o 5570 |
. . . . . . 7
|
| 32 | nfcv 2372 |
. . . . . . . . . 10
| |
| 33 | nfv 1574 |
. . . . . . . . . . . 12
| |
| 34 | nfcsb1v 3157 |
. . . . . . . . . . . 12
| |
| 35 | 33, 34, 32 | nfif 3631 |
. . . . . . . . . . 11
|
| 36 | 28, 35 | nfmpt 4176 |
. . . . . . . . . 10
|
| 37 | 32, 12, 36 | nfseq 10679 |
. . . . . . . . 9
|
| 38 | 37, 21 | nffv 5637 |
. . . . . . . 8
|
| 39 | 38 | nfeq2 2384 |
. . . . . . 7
|
| 40 | 31, 39 | nfan 1611 |
. . . . . 6
|
| 41 | 40 | nfex 1683 |
. . . . 5
|
| 42 | 28, 41 | nfrexw 2569 |
. . . 4
|
| 43 | 27, 42 | nfor 1620 |
. . 3
|
| 44 | 43 | nfiotaw 5282 |
. 2
|
| 45 | 1, 44 | nfcxfr 2369 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-recs 6451 df-frec 6537 df-seqfrec 10670 df-proddc 12062 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |