ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcprod1 Unicode version

Theorem nfcprod1 12065
Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
nfcprod1.1  |-  F/_ k A
Assertion
Ref Expression
nfcprod1  |-  F/_ k prod_ k  e.  A  B
Distinct variable group:    A, k
Allowed substitution hint:    B( k)

Proof of Theorem nfcprod1
Dummy variables  f  j  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proddc 12062 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
2 nfcv 2372 . . . . 5  |-  F/_ k ZZ
3 nfcprod1.1 . . . . . . . 8  |-  F/_ k A
4 nfcv 2372 . . . . . . . 8  |-  F/_ k
( ZZ>= `  m )
53, 4nfss 3217 . . . . . . 7  |-  F/ k  A  C_  ( ZZ>= `  m )
63nfcri 2366 . . . . . . . . 9  |-  F/ k  j  e.  A
76nfdc 1705 . . . . . . . 8  |-  F/ kDECID  j  e.  A
84, 7nfralxy 2568 . . . . . . 7  |-  F/ k A. j  e.  (
ZZ>= `  m )DECID  j  e.  A
95, 8nfan 1611 . . . . . 6  |-  F/ k ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
10 nfv 1574 . . . . . . . . . 10  |-  F/ k  y #  0
11 nfcv 2372 . . . . . . . . . . . 12  |-  F/_ k
n
12 nfcv 2372 . . . . . . . . . . . 12  |-  F/_ k  x.
13 nfmpt1 4177 . . . . . . . . . . . 12  |-  F/_ k
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
1411, 12, 13nfseq 10679 . . . . . . . . . . 11  |-  F/_ k  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
15 nfcv 2372 . . . . . . . . . . 11  |-  F/_ k  ~~>
16 nfcv 2372 . . . . . . . . . . 11  |-  F/_ k
y
1714, 15, 16nfbr 4130 . . . . . . . . . 10  |-  F/ k  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y
1810, 17nfan 1611 . . . . . . . . 9  |-  F/ k ( y #  0  /\ 
seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
1918nfex 1683 . . . . . . . 8  |-  F/ k E. y ( y #  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
204, 19nfrexw 2569 . . . . . . 7  |-  F/ k E. n  e.  (
ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
21 nfcv 2372 . . . . . . . . 9  |-  F/_ k
m
2221, 12, 13nfseq 10679 . . . . . . . 8  |-  F/_ k  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
23 nfcv 2372 . . . . . . . 8  |-  F/_ k
x
2422, 15, 23nfbr 4130 . . . . . . 7  |-  F/ k  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x
2520, 24nfan 1611 . . . . . 6  |-  F/ k ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )
269, 25nfan 1611 . . . . 5  |-  F/ k ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )
272, 26nfrexw 2569 . . . 4  |-  F/ k E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )
28 nfcv 2372 . . . . 5  |-  F/_ k NN
29 nfcv 2372 . . . . . . . 8  |-  F/_ k
f
30 nfcv 2372 . . . . . . . 8  |-  F/_ k
( 1 ... m
)
3129, 30, 3nff1o 5570 . . . . . . 7  |-  F/ k  f : ( 1 ... m ) -1-1-onto-> A
32 nfcv 2372 . . . . . . . . . 10  |-  F/_ k
1
33 nfv 1574 . . . . . . . . . . . 12  |-  F/ k  n  <_  m
34 nfcsb1v 3157 . . . . . . . . . . . 12  |-  F/_ k [_ ( f `  n
)  /  k ]_ B
3533, 34, 32nfif 3631 . . . . . . . . . . 11  |-  F/_ k if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 )
3628, 35nfmpt 4176 . . . . . . . . . 10  |-  F/_ k
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) )
3732, 12, 36nfseq 10679 . . . . . . . . 9  |-  F/_ k  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) )
3837, 21nffv 5637 . . . . . . . 8  |-  F/_ k
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
)
3938nfeq2 2384 . . . . . . 7  |-  F/ k  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
)
4031, 39nfan 1611 . . . . . 6  |-  F/ k ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4140nfex 1683 . . . . 5  |-  F/ k E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4228, 41nfrexw 2569 . . . 4  |-  F/ k E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  1 ) ) ) `  m
) )
4327, 42nfor 1620 . . 3  |-  F/ k ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) )
4443nfiotaw 5282 . 2  |-  F/_ k
( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m
) ) ) )
451, 44nfcxfr 2369 1  |-  F/_ k prod_ k  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 713  DECID wdc 839    = wceq 1395   E.wex 1538    e. wcel 2200   F/_wnfc 2359   A.wral 2508   E.wrex 2509   [_csb 3124    C_ wss 3197   ifcif 3602   class class class wbr 4083    |-> cmpt 4145   iotacio 5276   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   0cc0 7999   1c1 8000    x. cmul 8004    <_ cle 8182   # cap 8728   NNcn 9110   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204    seqcseq 10669    ~~> cli 11789   prod_cprod 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-recs 6451  df-frec 6537  df-seqfrec 10670  df-proddc 12062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator