| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcprod1 | Unicode version | ||
| Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfcprod1.1 |
|
| Ref | Expression |
|---|---|
| nfcprod1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-proddc 11716 |
. 2
| |
| 2 | nfcv 2339 |
. . . . 5
| |
| 3 | nfcprod1.1 |
. . . . . . . 8
| |
| 4 | nfcv 2339 |
. . . . . . . 8
| |
| 5 | 3, 4 | nfss 3176 |
. . . . . . 7
|
| 6 | 3 | nfcri 2333 |
. . . . . . . . 9
|
| 7 | 6 | nfdc 1673 |
. . . . . . . 8
|
| 8 | 4, 7 | nfralxy 2535 |
. . . . . . 7
|
| 9 | 5, 8 | nfan 1579 |
. . . . . 6
|
| 10 | nfv 1542 |
. . . . . . . . . 10
| |
| 11 | nfcv 2339 |
. . . . . . . . . . . 12
| |
| 12 | nfcv 2339 |
. . . . . . . . . . . 12
| |
| 13 | nfmpt1 4126 |
. . . . . . . . . . . 12
| |
| 14 | 11, 12, 13 | nfseq 10549 |
. . . . . . . . . . 11
|
| 15 | nfcv 2339 |
. . . . . . . . . . 11
| |
| 16 | nfcv 2339 |
. . . . . . . . . . 11
| |
| 17 | 14, 15, 16 | nfbr 4079 |
. . . . . . . . . 10
|
| 18 | 10, 17 | nfan 1579 |
. . . . . . . . 9
|
| 19 | 18 | nfex 1651 |
. . . . . . . 8
|
| 20 | 4, 19 | nfrexw 2536 |
. . . . . . 7
|
| 21 | nfcv 2339 |
. . . . . . . . 9
| |
| 22 | 21, 12, 13 | nfseq 10549 |
. . . . . . . 8
|
| 23 | nfcv 2339 |
. . . . . . . 8
| |
| 24 | 22, 15, 23 | nfbr 4079 |
. . . . . . 7
|
| 25 | 20, 24 | nfan 1579 |
. . . . . 6
|
| 26 | 9, 25 | nfan 1579 |
. . . . 5
|
| 27 | 2, 26 | nfrexw 2536 |
. . . 4
|
| 28 | nfcv 2339 |
. . . . 5
| |
| 29 | nfcv 2339 |
. . . . . . . 8
| |
| 30 | nfcv 2339 |
. . . . . . . 8
| |
| 31 | 29, 30, 3 | nff1o 5502 |
. . . . . . 7
|
| 32 | nfcv 2339 |
. . . . . . . . . 10
| |
| 33 | nfv 1542 |
. . . . . . . . . . . 12
| |
| 34 | nfcsb1v 3117 |
. . . . . . . . . . . 12
| |
| 35 | 33, 34, 32 | nfif 3589 |
. . . . . . . . . . 11
|
| 36 | 28, 35 | nfmpt 4125 |
. . . . . . . . . 10
|
| 37 | 32, 12, 36 | nfseq 10549 |
. . . . . . . . 9
|
| 38 | 37, 21 | nffv 5568 |
. . . . . . . 8
|
| 39 | 38 | nfeq2 2351 |
. . . . . . 7
|
| 40 | 31, 39 | nfan 1579 |
. . . . . 6
|
| 41 | 40 | nfex 1651 |
. . . . 5
|
| 42 | 28, 41 | nfrexw 2536 |
. . . 4
|
| 43 | 27, 42 | nfor 1588 |
. . 3
|
| 44 | 43 | nfiotaw 5223 |
. 2
|
| 45 | 1, 44 | nfcxfr 2336 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-seqfrec 10540 df-proddc 11716 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |