ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12c Unicode version

Theorem tz6.12c 5588
Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
tz6.12c  |-  ( E! y  A F y  ->  ( ( F `
 A )  =  y  <->  A F y ) )
Distinct variable groups:    y, F    y, A

Proof of Theorem tz6.12c
StepHypRef Expression
1 euex 2075 . . . 4  |-  ( E! y  A F y  ->  E. y  A F y )
2 nfeu1 2056 . . . . . 6  |-  F/ y E! y  A F y
3 nfv 1542 . . . . . 6  |-  F/ y  A F ( F `
 A )
42, 3nfim 1586 . . . . 5  |-  F/ y ( E! y  A F y  ->  A F ( F `  A ) )
5 tz6.12-1 5585 . . . . . . . 8  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( F `  A )  =  y )
65expcom 116 . . . . . . 7  |-  ( E! y  A F y  ->  ( A F y  ->  ( F `  A )  =  y ) )
7 breq2 4037 . . . . . . . 8  |-  ( ( F `  A )  =  y  ->  ( A F ( F `  A )  <->  A F
y ) )
87biimprd 158 . . . . . . 7  |-  ( ( F `  A )  =  y  ->  ( A F y  ->  A F ( F `  A ) ) )
96, 8syli 37 . . . . . 6  |-  ( E! y  A F y  ->  ( A F y  ->  A F
( F `  A
) ) )
109com12 30 . . . . 5  |-  ( A F y  ->  ( E! y  A F
y  ->  A F
( F `  A
) ) )
114, 10exlimi 1608 . . . 4  |-  ( E. y  A F y  ->  ( E! y  A F y  ->  A F ( F `  A ) ) )
121, 11mpcom 36 . . 3  |-  ( E! y  A F y  ->  A F ( F `  A ) )
1312, 7syl5ibcom 155 . 2  |-  ( E! y  A F y  ->  ( ( F `
 A )  =  y  ->  A F
y ) )
1413, 6impbid 129 1  |-  ( E! y  A F y  ->  ( ( F `
 A )  =  y  <->  A F y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1506   E!weu 2045   class class class wbr 4033   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266
This theorem is referenced by:  fnbrfvb  5601
  Copyright terms: Public domain W3C validator