ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiotaw Unicode version

Theorem nfiotaw 5236
Description: Bound-variable hypothesis builder for the  iota class. (Contributed by NM, 23-Aug-2011.)
Hypothesis
Ref Expression
nfiotaw.1  |-  F/ x ph
Assertion
Ref Expression
nfiotaw  |-  F/_ x
( iota y ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem nfiotaw
StepHypRef Expression
1 nftru 1489 . . 3  |-  F/ y T.
2 nfiotaw.1 . . . 4  |-  F/ x ph
32a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
41, 3nfiotadw 5235 . 2  |-  ( T. 
->  F/_ x ( iota y ph ) )
54mptru 1382 1  |-  F/_ x
( iota y ph )
Colors of variables: wff set class
Syntax hints:   T. wtru 1374   F/wnf 1483   F/_wnfc 2335   iotacio 5230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-sn 3639  df-uni 3851  df-iota 5232
This theorem is referenced by:  csbiotag  5264  nffv  5586  nfsum1  11667  nfsum  11668  nfcprod1  11865  nfcprod  11866
  Copyright terms: Public domain W3C validator