ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiotaw Unicode version

Theorem nfiotaw 5200
Description: Bound-variable hypothesis builder for the  iota class. (Contributed by NM, 23-Aug-2011.)
Hypothesis
Ref Expression
nfiotaw.1  |-  F/ x ph
Assertion
Ref Expression
nfiotaw  |-  F/_ x
( iota y ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem nfiotaw
StepHypRef Expression
1 nftru 1477 . . 3  |-  F/ y T.
2 nfiotaw.1 . . . 4  |-  F/ x ph
32a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
41, 3nfiotadw 5199 . 2  |-  ( T. 
->  F/_ x ( iota y ph ) )
54mptru 1373 1  |-  F/_ x
( iota y ph )
Colors of variables: wff set class
Syntax hints:   T. wtru 1365   F/wnf 1471   F/_wnfc 2319   iotacio 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-sn 3613  df-uni 3825  df-iota 5196
This theorem is referenced by:  csbiotag  5228  nffv  5544  nfsum1  11395  nfsum  11396  nfcprod1  11593  nfcprod  11594
  Copyright terms: Public domain W3C validator