| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffv | Unicode version | ||
| Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffv.1 |
|
| nffv.2 |
|
| Ref | Expression |
|---|---|
| nffv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5326 |
. 2
| |
| 2 | nffv.2 |
. . . 4
| |
| 3 | nffv.1 |
. . . 4
| |
| 4 | nfcv 2372 |
. . . 4
| |
| 5 | 2, 3, 4 | nfbr 4130 |
. . 3
|
| 6 | 5 | nfiotaw 5282 |
. 2
|
| 7 | 1, 6 | nfcxfr 2369 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 |
| This theorem is referenced by: nffvmpt1 5638 nffvd 5639 dffn5imf 5689 fvmptssdm 5719 fvmptf 5727 eqfnfv2f 5736 ralrnmpt 5777 rexrnmpt 5778 ffnfvf 5794 funiunfvdmf 5888 dff13f 5894 nfiso 5930 nfrecs 6453 nffrec 6542 cc2 7453 nfseq 10679 seq3f1olemstep 10736 seq3f1olemp 10737 nfsum1 11867 nfsum 11868 fsumrelem 11982 nfcprod1 12065 nfcprod 12066 ctiunctlemfo 13010 ctiunct 13011 prdsbas3 13320 cnmpt11 14957 cnmpt21 14965 lgseisenlem2 15750 |
| Copyright terms: Public domain | W3C validator |