ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffv Unicode version

Theorem nffv 5328
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffv.1  |-  F/_ x F
nffv.2  |-  F/_ x A
Assertion
Ref Expression
nffv  |-  F/_ x
( F `  A
)

Proof of Theorem nffv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-fv 5036 . 2  |-  ( F `
 A )  =  ( iota y A F y )
2 nffv.2 . . . 4  |-  F/_ x A
3 nffv.1 . . . 4  |-  F/_ x F
4 nfcv 2229 . . . 4  |-  F/_ x
y
52, 3, 4nfbr 3895 . . 3  |-  F/ x  A F y
65nfiotaxy 4997 . 2  |-  F/_ x
( iota y A F y )
71, 6nfcxfr 2226 1  |-  F/_ x
( F `  A
)
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2216   class class class wbr 3851   iotacio 4991   ` cfv 5028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-v 2622  df-un 3004  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-iota 4993  df-fv 5036
This theorem is referenced by:  nffvmpt1  5329  nffvd  5330  dffn5imf  5372  fvmptssdm  5400  fvmptf  5408  eqfnfv2f  5415  ralrnmpt  5455  rexrnmpt  5456  ffnfvf  5471  funiunfvdmf  5557  dff13f  5563  nfiso  5599  nfrecs  6086  nffrec  6175  nfiseq  9929  seq3f1olemstep  9991  seq3f1olemp  9992  nfsum1  10806  nfsum  10807  fsumrelem  10926
  Copyright terms: Public domain W3C validator