ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffv Unicode version

Theorem nffv 5431
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffv.1  |-  F/_ x F
nffv.2  |-  F/_ x A
Assertion
Ref Expression
nffv  |-  F/_ x
( F `  A
)

Proof of Theorem nffv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-fv 5131 . 2  |-  ( F `
 A )  =  ( iota y A F y )
2 nffv.2 . . . 4  |-  F/_ x A
3 nffv.1 . . . 4  |-  F/_ x F
4 nfcv 2281 . . . 4  |-  F/_ x
y
52, 3, 4nfbr 3974 . . 3  |-  F/ x  A F y
65nfiotaw 5092 . 2  |-  F/_ x
( iota y A F y )
71, 6nfcxfr 2278 1  |-  F/_ x
( F `  A
)
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2268   class class class wbr 3929   iotacio 5086   ` cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131
This theorem is referenced by:  nffvmpt1  5432  nffvd  5433  dffn5imf  5476  fvmptssdm  5505  fvmptf  5513  eqfnfv2f  5522  ralrnmpt  5562  rexrnmpt  5563  ffnfvf  5579  funiunfvdmf  5665  dff13f  5671  nfiso  5707  nfrecs  6204  nffrec  6293  nfseq  10228  seq3f1olemstep  10274  seq3f1olemp  10275  nfsum1  11125  nfsum  11126  fsumrelem  11240  nfcprod1  11323  nfcprod  11324  ctiunctlemfo  11952  ctiunct  11953  cnmpt11  12452  cnmpt21  12460
  Copyright terms: Public domain W3C validator