ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiotag Unicode version

Theorem csbiotag 5263
Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
csbiotag  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( iota y ph )  =  ( iota y [. A  /  x ]. ph )
)
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    ph( x, y)    A( x)    V( x, y)

Proof of Theorem csbiotag
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3095 . . 3  |-  ( z  =  A  ->  [_ z  /  x ]_ ( iota y ph )  = 
[_ A  /  x ]_ ( iota y ph ) )
2 dfsbcq2 3000 . . . 4  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
32iotabidv 5253 . . 3  |-  ( z  =  A  ->  ( iota y [ z  /  x ] ph )  =  ( iota y [. A  /  x ]. ph )
)
41, 3eqeq12d 2219 . 2  |-  ( z  =  A  ->  ( [_ z  /  x ]_ ( iota y ph )  =  ( iota y [ z  /  x ] ph )  <->  [_ A  /  x ]_ ( iota y ph )  =  ( iota y [. A  /  x ]. ph ) ) )
5 vex 2774 . . 3  |-  z  e. 
_V
6 nfs1v 1966 . . . 4  |-  F/ x [ z  /  x ] ph
76nfiotaw 5235 . . 3  |-  F/_ x
( iota y [ z  /  x ] ph )
8 sbequ12 1793 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
98iotabidv 5253 . . 3  |-  ( x  =  z  ->  ( iota y ph )  =  ( iota y [ z  /  x ] ph ) )
105, 7, 9csbief 3137 . 2  |-  [_ z  /  x ]_ ( iota y ph )  =  ( iota y [ z  /  x ] ph )
114, 10vtoclg 2832 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( iota y ph )  =  ( iota y [. A  /  x ]. ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372   [wsb 1784    e. wcel 2175   [.wsbc 2997   [_csb 3092   iotacio 5229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-sbc 2998  df-csb 3093  df-sn 3638  df-uni 3850  df-iota 5231
This theorem is referenced by:  csbfv12g  5613
  Copyright terms: Public domain W3C validator