ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiotag Unicode version

Theorem csbiotag 5211
Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
csbiotag  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( iota y ph )  =  ( iota y [. A  /  x ]. ph )
)
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    ph( x, y)    A( x)    V( x, y)

Proof of Theorem csbiotag
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3062 . . 3  |-  ( z  =  A  ->  [_ z  /  x ]_ ( iota y ph )  = 
[_ A  /  x ]_ ( iota y ph ) )
2 dfsbcq2 2967 . . . 4  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
32iotabidv 5201 . . 3  |-  ( z  =  A  ->  ( iota y [ z  /  x ] ph )  =  ( iota y [. A  /  x ]. ph )
)
41, 3eqeq12d 2192 . 2  |-  ( z  =  A  ->  ( [_ z  /  x ]_ ( iota y ph )  =  ( iota y [ z  /  x ] ph )  <->  [_ A  /  x ]_ ( iota y ph )  =  ( iota y [. A  /  x ]. ph ) ) )
5 vex 2742 . . 3  |-  z  e. 
_V
6 nfs1v 1939 . . . 4  |-  F/ x [ z  /  x ] ph
76nfiotaw 5184 . . 3  |-  F/_ x
( iota y [ z  /  x ] ph )
8 sbequ12 1771 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
98iotabidv 5201 . . 3  |-  ( x  =  z  ->  ( iota y ph )  =  ( iota y [ z  /  x ] ph ) )
105, 7, 9csbief 3103 . 2  |-  [_ z  /  x ]_ ( iota y ph )  =  ( iota y [ z  /  x ] ph )
114, 10vtoclg 2799 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( iota y ph )  =  ( iota y [. A  /  x ]. ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   [wsb 1762    e. wcel 2148   [.wsbc 2964   [_csb 3059   iotacio 5178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-sn 3600  df-uni 3812  df-iota 5180
This theorem is referenced by:  csbfv12g  5553
  Copyright terms: Public domain W3C validator