ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiotag Unicode version

Theorem csbiotag 5278
Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
csbiotag  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( iota y ph )  =  ( iota y [. A  /  x ]. ph )
)
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    ph( x, y)    A( x)    V( x, y)

Proof of Theorem csbiotag
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3100 . . 3  |-  ( z  =  A  ->  [_ z  /  x ]_ ( iota y ph )  = 
[_ A  /  x ]_ ( iota y ph ) )
2 dfsbcq2 3005 . . . 4  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
32iotabidv 5268 . . 3  |-  ( z  =  A  ->  ( iota y [ z  /  x ] ph )  =  ( iota y [. A  /  x ]. ph )
)
41, 3eqeq12d 2221 . 2  |-  ( z  =  A  ->  ( [_ z  /  x ]_ ( iota y ph )  =  ( iota y [ z  /  x ] ph )  <->  [_ A  /  x ]_ ( iota y ph )  =  ( iota y [. A  /  x ]. ph ) ) )
5 vex 2776 . . 3  |-  z  e. 
_V
6 nfs1v 1968 . . . 4  |-  F/ x [ z  /  x ] ph
76nfiotaw 5250 . . 3  |-  F/_ x
( iota y [ z  /  x ] ph )
8 sbequ12 1795 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
98iotabidv 5268 . . 3  |-  ( x  =  z  ->  ( iota y ph )  =  ( iota y [ z  /  x ] ph ) )
105, 7, 9csbief 3142 . 2  |-  [_ z  /  x ]_ ( iota y ph )  =  ( iota y [ z  /  x ] ph )
114, 10vtoclg 2835 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( iota y ph )  =  ( iota y [. A  /  x ]. ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   [wsb 1786    e. wcel 2177   [.wsbc 3002   [_csb 3097   iotacio 5244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-sn 3644  df-uni 3860  df-iota 5246
This theorem is referenced by:  csbfv12g  5632
  Copyright terms: Public domain W3C validator