ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiotaw GIF version

Theorem nfiotaw 5182
Description: Bound-variable hypothesis builder for the class. (Contributed by NM, 23-Aug-2011.)
Hypothesis
Ref Expression
nfiotaw.1 𝑥𝜑
Assertion
Ref Expression
nfiotaw 𝑥(℩𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfiotaw
StepHypRef Expression
1 nftru 1466 . . 3 𝑦
2 nfiotaw.1 . . . 4 𝑥𝜑
32a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfiotadw 5181 . 2 (⊤ → 𝑥(℩𝑦𝜑))
54mptru 1362 1 𝑥(℩𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wtru 1354  wnf 1460  wnfc 2306  cio 5176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-sn 3598  df-uni 3810  df-iota 5178
This theorem is referenced by:  csbiotag  5209  nffv  5525  nfsum1  11363  nfsum  11364  nfcprod1  11561  nfcprod  11562
  Copyright terms: Public domain W3C validator