ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiotaw GIF version

Theorem nfiotaw 5281
Description: Bound-variable hypothesis builder for the class. (Contributed by NM, 23-Aug-2011.)
Hypothesis
Ref Expression
nfiotaw.1 𝑥𝜑
Assertion
Ref Expression
nfiotaw 𝑥(℩𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfiotaw
StepHypRef Expression
1 nftru 1512 . . 3 𝑦
2 nfiotaw.1 . . . 4 𝑥𝜑
32a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfiotadw 5280 . 2 (⊤ → 𝑥(℩𝑦𝜑))
54mptru 1404 1 𝑥(℩𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wtru 1396  wnf 1506  wnfc 2359  cio 5275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-sn 3672  df-uni 3888  df-iota 5277
This theorem is referenced by:  csbiotag  5310  nffv  5636  nfsum1  11862  nfsum  11863  nfcprod1  12060  nfcprod  12061
  Copyright terms: Public domain W3C validator