ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiotaw GIF version

Theorem nfiotaw 5194
Description: Bound-variable hypothesis builder for the class. (Contributed by NM, 23-Aug-2011.)
Hypothesis
Ref Expression
nfiotaw.1 𝑥𝜑
Assertion
Ref Expression
nfiotaw 𝑥(℩𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfiotaw
StepHypRef Expression
1 nftru 1476 . . 3 𝑦
2 nfiotaw.1 . . . 4 𝑥𝜑
32a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfiotadw 5193 . 2 (⊤ → 𝑥(℩𝑦𝜑))
54mptru 1372 1 𝑥(℩𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wtru 1364  wnf 1470  wnfc 2316  cio 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-sn 3610  df-uni 3822  df-iota 5190
This theorem is referenced by:  csbiotag  5221  nffv  5537  nfsum1  11378  nfsum  11379  nfcprod1  11576  nfcprod  11577
  Copyright terms: Public domain W3C validator