| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfiotaw | GIF version | ||
| Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by NM, 23-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfiotaw.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfiotaw | ⊢ Ⅎ𝑥(℩𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1480 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfiotaw.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 4 | 1, 3 | nfiotadw 5223 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦𝜑)) |
| 5 | 4 | mptru 1373 | 1 ⊢ Ⅎ𝑥(℩𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1365 Ⅎwnf 1474 Ⅎwnfc 2326 ℩cio 5218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-sn 3629 df-uni 3841 df-iota 5220 |
| This theorem is referenced by: csbiotag 5252 nffv 5571 nfsum1 11538 nfsum 11539 nfcprod1 11736 nfcprod 11737 |
| Copyright terms: Public domain | W3C validator |