Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfiotaw | GIF version |
Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by NM, 23-Aug-2011.) |
Ref | Expression |
---|---|
nfiotaw.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfiotaw | ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1454 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfiotaw.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | 1, 3 | nfiotadw 5156 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦𝜑)) |
5 | 4 | mptru 1352 | 1 ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1344 Ⅎwnf 1448 Ⅎwnfc 2295 ℩cio 5151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-sn 3582 df-uni 3790 df-iota 5153 |
This theorem is referenced by: csbiotag 5181 nffv 5496 nfsum1 11297 nfsum 11298 nfcprod1 11495 nfcprod 11496 |
Copyright terms: Public domain | W3C validator |