Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfiotaw | GIF version |
Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by NM, 23-Aug-2011.) |
Ref | Expression |
---|---|
nfiotaw.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfiotaw | ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1459 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfiotaw.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | 1, 3 | nfiotadw 5163 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦𝜑)) |
5 | 4 | mptru 1357 | 1 ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1349 Ⅎwnf 1453 Ⅎwnfc 2299 ℩cio 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-sn 3589 df-uni 3797 df-iota 5160 |
This theorem is referenced by: csbiotag 5191 nffv 5506 nfsum1 11319 nfsum 11320 nfcprod1 11517 nfcprod 11518 |
Copyright terms: Public domain | W3C validator |