| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfiotaw | GIF version | ||
| Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by NM, 23-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfiotaw.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfiotaw | ⊢ Ⅎ𝑥(℩𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1490 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfiotaw.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 4 | 1, 3 | nfiotadw 5244 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦𝜑)) |
| 5 | 4 | mptru 1382 | 1 ⊢ Ⅎ𝑥(℩𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1374 Ⅎwnf 1484 Ⅎwnfc 2336 ℩cio 5239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-sn 3644 df-uni 3857 df-iota 5241 |
| This theorem is referenced by: csbiotag 5273 nffv 5599 nfsum1 11742 nfsum 11743 nfcprod1 11940 nfcprod 11941 |
| Copyright terms: Public domain | W3C validator |