| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eliunxp | Unicode version | ||
| Description: Membership in a union of
cross products. Analogue of elxp 4691 for
nonconstant |
| Ref | Expression |
|---|---|
| eliunxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 4783 |
. . . . . 6
| |
| 2 | 1 | rgenw 2560 |
. . . . 5
|
| 3 | reliun 4795 |
. . . . 5
| |
| 4 | 2, 3 | mpbir 146 |
. . . 4
|
| 5 | elrel 4776 |
. . . 4
| |
| 6 | 4, 5 | mpan 424 |
. . 3
|
| 7 | 6 | pm4.71ri 392 |
. 2
|
| 8 | nfiu1 3956 |
. . . 4
| |
| 9 | 8 | nfel2 2360 |
. . 3
|
| 10 | 9 | 19.41 1708 |
. 2
|
| 11 | 19.41v 1925 |
. . . 4
| |
| 12 | eleq1 2267 |
. . . . . . 7
| |
| 13 | opeliunxp 4729 |
. . . . . . 7
| |
| 14 | 12, 13 | bitrdi 196 |
. . . . . 6
|
| 15 | 14 | pm5.32i 454 |
. . . . 5
|
| 16 | 15 | exbii 1627 |
. . . 4
|
| 17 | 11, 16 | bitr3i 186 |
. . 3
|
| 18 | 17 | exbii 1627 |
. 2
|
| 19 | 7, 10, 18 | 3bitr2i 208 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-iun 3928 df-opab 4105 df-xp 4680 df-rel 4681 |
| This theorem is referenced by: raliunxp 4818 rexiunxp 4819 dfmpt3 5397 mpomptx 6035 fisumcom2 11691 fprodcom2fi 11879 |
| Copyright terms: Public domain | W3C validator |