| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eliunxp | Unicode version | ||
| Description: Membership in a union of
cross products. Analogue of elxp 4705 for
nonconstant |
| Ref | Expression |
|---|---|
| eliunxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 4797 |
. . . . . 6
| |
| 2 | 1 | rgenw 2562 |
. . . . 5
|
| 3 | reliun 4809 |
. . . . 5
| |
| 4 | 2, 3 | mpbir 146 |
. . . 4
|
| 5 | elrel 4790 |
. . . 4
| |
| 6 | 4, 5 | mpan 424 |
. . 3
|
| 7 | 6 | pm4.71ri 392 |
. 2
|
| 8 | nfiu1 3966 |
. . . 4
| |
| 9 | 8 | nfel2 2362 |
. . 3
|
| 10 | 9 | 19.41 1710 |
. 2
|
| 11 | 19.41v 1927 |
. . . 4
| |
| 12 | eleq1 2269 |
. . . . . . 7
| |
| 13 | opeliunxp 4743 |
. . . . . . 7
| |
| 14 | 12, 13 | bitrdi 196 |
. . . . . 6
|
| 15 | 14 | pm5.32i 454 |
. . . . 5
|
| 16 | 15 | exbii 1629 |
. . . 4
|
| 17 | 11, 16 | bitr3i 186 |
. . 3
|
| 18 | 17 | exbii 1629 |
. 2
|
| 19 | 7, 10, 18 | 3bitr2i 208 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-iun 3938 df-opab 4117 df-xp 4694 df-rel 4695 |
| This theorem is referenced by: raliunxp 4832 rexiunxp 4833 dfmpt3 5413 mpomptx 6054 fisumcom2 11834 fprodcom2fi 12022 |
| Copyright terms: Public domain | W3C validator |