Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eliunxp | Unicode version |
Description: Membership in a union of cross products. Analogue of elxp 4621 for nonconstant . (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
eliunxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 4713 | . . . . . 6 | |
2 | 1 | rgenw 2521 | . . . . 5 |
3 | reliun 4725 | . . . . 5 | |
4 | 2, 3 | mpbir 145 | . . . 4 |
5 | elrel 4706 | . . . 4 | |
6 | 4, 5 | mpan 421 | . . 3 |
7 | 6 | pm4.71ri 390 | . 2 |
8 | nfiu1 3896 | . . . 4 | |
9 | 8 | nfel2 2321 | . . 3 |
10 | 9 | 19.41 1674 | . 2 |
11 | 19.41v 1890 | . . . 4 | |
12 | eleq1 2229 | . . . . . . 7 | |
13 | opeliunxp 4659 | . . . . . . 7 | |
14 | 12, 13 | bitrdi 195 | . . . . . 6 |
15 | 14 | pm5.32i 450 | . . . . 5 |
16 | 15 | exbii 1593 | . . . 4 |
17 | 11, 16 | bitr3i 185 | . . 3 |
18 | 17 | exbii 1593 | . 2 |
19 | 7, 10, 18 | 3bitr2i 207 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wral 2444 csn 3576 cop 3579 ciun 3866 cxp 4602 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-iun 3868 df-opab 4044 df-xp 4610 df-rel 4611 |
This theorem is referenced by: raliunxp 4745 rexiunxp 4746 dfmpt3 5310 mpomptx 5933 fisumcom2 11379 fprodcom2fi 11567 |
Copyright terms: Public domain | W3C validator |