Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeliunxp2 | Unicode version |
Description: Membership in a union of cross products. (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
opeliunxp2.1 |
Ref | Expression |
---|---|
opeliunxp2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3999 | . . 3 | |
2 | relxp 4729 | . . . . . 6 | |
3 | 2 | rgenw 2530 | . . . . 5 |
4 | reliun 4741 | . . . . 5 | |
5 | 3, 4 | mpbir 146 | . . . 4 |
6 | 5 | brrelex1i 4663 | . . 3 |
7 | 1, 6 | sylbir 135 | . 2 |
8 | elex 2746 | . . 3 | |
9 | 8 | adantr 276 | . 2 |
10 | nfcv 2317 | . . 3 | |
11 | nfiu1 3912 | . . . . 5 | |
12 | 11 | nfel2 2330 | . . . 4 |
13 | nfv 1526 | . . . 4 | |
14 | 12, 13 | nfbi 1587 | . . 3 |
15 | opeq1 3774 | . . . . 5 | |
16 | 15 | eleq1d 2244 | . . . 4 |
17 | eleq1 2238 | . . . . 5 | |
18 | opeliunxp2.1 | . . . . . 6 | |
19 | 18 | eleq2d 2245 | . . . . 5 |
20 | 17, 19 | anbi12d 473 | . . . 4 |
21 | 16, 20 | bibi12d 235 | . . 3 |
22 | opeliunxp 4675 | . . 3 | |
23 | 10, 14, 21, 22 | vtoclgf 2793 | . 2 |
24 | 7, 9, 23 | pm5.21nii 704 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wral 2453 cvv 2735 csn 3589 cop 3592 ciun 3882 class class class wbr 3998 cxp 4618 wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-iun 3884 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 |
This theorem is referenced by: mpoxopn0yelv 6230 eldvap 13702 |
Copyright terms: Public domain | W3C validator |