ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeliunxp2 Unicode version

Theorem opeliunxp2 4806
Description: Membership in a union of cross products. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
opeliunxp2.1  |-  ( x  =  C  ->  B  =  E )
Assertion
Ref Expression
opeliunxp2  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
Distinct variable groups:    x, C    x, D    x, E    x, A
Allowed substitution hint:    B( x)

Proof of Theorem opeliunxp2
StepHypRef Expression
1 df-br 4034 . . 3  |-  ( C
U_ x  e.  A  ( { x }  X.  B ) D  <->  <. C ,  D >.  e.  U_ x  e.  A  ( {
x }  X.  B
) )
2 relxp 4772 . . . . . 6  |-  Rel  ( { x }  X.  B )
32rgenw 2552 . . . . 5  |-  A. x  e.  A  Rel  ( { x }  X.  B
)
4 reliun 4784 . . . . 5  |-  ( Rel  U_ x  e.  A  ( { x }  X.  B )  <->  A. x  e.  A  Rel  ( { x }  X.  B
) )
53, 4mpbir 146 . . . 4  |-  Rel  U_ x  e.  A  ( {
x }  X.  B
)
65brrelex1i 4706 . . 3  |-  ( C
U_ x  e.  A  ( { x }  X.  B ) D  ->  C  e.  _V )
71, 6sylbir 135 . 2  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  ->  C  e.  _V )
8 elex 2774 . . 3  |-  ( C  e.  A  ->  C  e.  _V )
98adantr 276 . 2  |-  ( ( C  e.  A  /\  D  e.  E )  ->  C  e.  _V )
10 nfcv 2339 . . 3  |-  F/_ x C
11 nfiu1 3946 . . . . 5  |-  F/_ x U_ x  e.  A  ( { x }  X.  B )
1211nfel2 2352 . . . 4  |-  F/ x <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )
13 nfv 1542 . . . 4  |-  F/ x
( C  e.  A  /\  D  e.  E
)
1412, 13nfbi 1603 . . 3  |-  F/ x
( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
15 opeq1 3808 . . . . 5  |-  ( x  =  C  ->  <. x ,  D >.  =  <. C ,  D >. )
1615eleq1d 2265 . . . 4  |-  ( x  =  C  ->  ( <. x ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  <. C ,  D >.  e.  U_ x  e.  A  ( {
x }  X.  B
) ) )
17 eleq1 2259 . . . . 5  |-  ( x  =  C  ->  (
x  e.  A  <->  C  e.  A ) )
18 opeliunxp2.1 . . . . . 6  |-  ( x  =  C  ->  B  =  E )
1918eleq2d 2266 . . . . 5  |-  ( x  =  C  ->  ( D  e.  B  <->  D  e.  E ) )
2017, 19anbi12d 473 . . . 4  |-  ( x  =  C  ->  (
( x  e.  A  /\  D  e.  B
)  <->  ( C  e.  A  /\  D  e.  E ) ) )
2116, 20bibi12d 235 . . 3  |-  ( x  =  C  ->  (
( <. x ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  D  e.  B ) )  <->  ( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) ) ) )
22 opeliunxp 4718 . . 3  |-  ( <.
x ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  D  e.  B ) )
2310, 14, 21, 22vtoclgf 2822 . 2  |-  ( C  e.  _V  ->  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) ) )
247, 9, 23pm5.21nii 705 1  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   {csn 3622   <.cop 3625   U_ciun 3916   class class class wbr 4033    X. cxp 4661   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-iun 3918  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by:  mpoxopn0yelv  6297  eldvap  14918
  Copyright terms: Public domain W3C validator