ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfneg Unicode version

Theorem nfneg 8251
Description: Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfneg.1  |-  F/_ x A
Assertion
Ref Expression
nfneg  |-  F/_ x -u A

Proof of Theorem nfneg
StepHypRef Expression
1 nfneg.1 . . . 4  |-  F/_ x A
21a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
32nfnegd 8250 . 2  |-  ( T. 
->  F/_ x -u A
)
43mptru 1381 1  |-  F/_ x -u A
Colors of variables: wff set class
Syntax hints:   T. wtru 1373   F/_wnfc 2334   -ucneg 8226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5229  df-fv 5276  df-ov 5937  df-neg 8228
This theorem is referenced by:  infssuzcldc  10359
  Copyright terms: Public domain W3C validator