ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbnegg Unicode version

Theorem csbnegg 8241
Description: Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
csbnegg  |-  ( A  e.  V  ->  [_ A  /  x ]_ -u B  =  -u [_ A  /  x ]_ B )

Proof of Theorem csbnegg
StepHypRef Expression
1 csbov2g 5967 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( 0  -  B )  =  ( 0  -  [_ A  /  x ]_ B
) )
2 df-neg 8217 . . 3  |-  -u B  =  ( 0  -  B )
32csbeq2i 3111 . 2  |-  [_ A  /  x ]_ -u B  =  [_ A  /  x ]_ ( 0  -  B
)
4 df-neg 8217 . 2  |-  -u [_ A  /  x ]_ B  =  ( 0  -  [_ A  /  x ]_ B
)
51, 3, 43eqtr4g 2254 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ -u B  =  -u [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   [_csb 3084  (class class class)co 5925   0cc0 7896    - cmin 8214   -ucneg 8215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928  df-neg 8217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator