ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbnegg Unicode version

Theorem csbnegg 8305
Description: Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
csbnegg  |-  ( A  e.  V  ->  [_ A  /  x ]_ -u B  =  -u [_ A  /  x ]_ B )

Proof of Theorem csbnegg
StepHypRef Expression
1 csbov2g 6009 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( 0  -  B )  =  ( 0  -  [_ A  /  x ]_ B
) )
2 df-neg 8281 . . 3  |-  -u B  =  ( 0  -  B )
32csbeq2i 3128 . 2  |-  [_ A  /  x ]_ -u B  =  [_ A  /  x ]_ ( 0  -  B
)
4 df-neg 8281 . 2  |-  -u [_ A  /  x ]_ B  =  ( 0  -  [_ A  /  x ]_ B
)
51, 3, 43eqtr4g 2265 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ -u B  =  -u [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   [_csb 3101  (class class class)co 5967   0cc0 7960    - cmin 8278   -ucneg 8279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-neg 8281
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator