| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infssuzcldc | Unicode version | ||
| Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.) |
| Ref | Expression |
|---|---|
| infssuzledc.m |
|
| infssuzledc.s |
|
| infssuzledc.a |
|
| infssuzledc.dc |
|
| Ref | Expression |
|---|---|
| infssuzcldc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infssuzledc.m |
. . . 4
| |
| 2 | infssuzledc.s |
. . . 4
| |
| 3 | infssuzledc.a |
. . . 4
| |
| 4 | infssuzledc.dc |
. . . 4
| |
| 5 | 1, 2, 3, 4 | infssuzex 10453 |
. . 3
|
| 6 | ssrab2 3309 |
. . . . . . 7
| |
| 7 | 2, 6 | eqsstri 3256 |
. . . . . 6
|
| 8 | uzssz 9742 |
. . . . . 6
| |
| 9 | 7, 8 | sstri 3233 |
. . . . 5
|
| 10 | zssre 9453 |
. . . . 5
| |
| 11 | 9, 10 | sstri 3233 |
. . . 4
|
| 12 | 11 | a1i 9 |
. . 3
|
| 13 | 5, 12 | infrenegsupex 9789 |
. 2
|
| 14 | 1, 2, 3, 4 | infssuzex 10453 |
. . . . . 6
|
| 15 | 14, 12 | infsupneg 9791 |
. . . . 5
|
| 16 | negeq 8339 |
. . . . . . . . . 10
| |
| 17 | 16 | eleq1d 2298 |
. . . . . . . . 9
|
| 18 | 17 | elrab 2959 |
. . . . . . . 8
|
| 19 | 9 | sseli 3220 |
. . . . . . . . . 10
|
| 20 | 19 | adantl 277 |
. . . . . . . . 9
|
| 21 | simpl 109 |
. . . . . . . . . . 11
| |
| 22 | 21 | recnd 8175 |
. . . . . . . . . 10
|
| 23 | znegclb 9479 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | syl 14 |
. . . . . . . . 9
|
| 25 | 20, 24 | mpbird 167 |
. . . . . . . 8
|
| 26 | 18, 25 | sylbi 121 |
. . . . . . 7
|
| 27 | 26 | ssriv 3228 |
. . . . . 6
|
| 28 | 27 | a1i 9 |
. . . . 5
|
| 29 | 15, 28 | suprzclex 9545 |
. . . 4
|
| 30 | nfrab1 2711 |
. . . . . 6
| |
| 31 | nfcv 2372 |
. . . . . 6
| |
| 32 | nfcv 2372 |
. . . . . 6
| |
| 33 | 30, 31, 32 | nfsup 7159 |
. . . . 5
|
| 34 | 33 | nfneg 8343 |
. . . . . 6
|
| 35 | 34 | nfel1 2383 |
. . . . 5
|
| 36 | negeq 8339 |
. . . . . 6
| |
| 37 | 36 | eleq1d 2298 |
. . . . 5
|
| 38 | 33, 31, 35, 37 | elrabf 2957 |
. . . 4
|
| 39 | 29, 38 | sylib 122 |
. . 3
|
| 40 | 39 | simprd 114 |
. 2
|
| 41 | 13, 40 | eqeltrd 2306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-fzo 10339 |
| This theorem is referenced by: zsupssdc 10458 bitsfzolem 12465 nnmindc 12555 nninfctlemfo 12561 lcmval 12585 lcmcllem 12589 odzcllem 12765 4sqlem13m 12926 4sqlem14 12927 4sqlem17 12930 4sqlem18 12931 |
| Copyright terms: Public domain | W3C validator |