ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infssuzcldc Unicode version

Theorem infssuzcldc 11966
Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.)
Hypotheses
Ref Expression
infssuzledc.m  |-  ( ph  ->  M  e.  ZZ )
infssuzledc.s  |-  S  =  { n  e.  (
ZZ>= `  M )  |  ps }
infssuzledc.a  |-  ( ph  ->  A  e.  S )
infssuzledc.dc  |-  ( (
ph  /\  n  e.  ( M ... A ) )  -> DECID  ps )
Assertion
Ref Expression
infssuzcldc  |-  ( ph  -> inf ( S ,  RR ,  <  )  e.  S
)
Distinct variable groups:    A, n    n, M    ph, n
Allowed substitution hints:    ps( n)    S( n)

Proof of Theorem infssuzcldc
Dummy variables  y  w  x  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infssuzledc.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
2 infssuzledc.s . . . 4  |-  S  =  { n  e.  (
ZZ>= `  M )  |  ps }
3 infssuzledc.a . . . 4  |-  ( ph  ->  A  e.  S )
4 infssuzledc.dc . . . 4  |-  ( (
ph  /\  n  e.  ( M ... A ) )  -> DECID  ps )
51, 2, 3, 4infssuzex 11964 . . 3  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  S  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. w  e.  S  w  <  y ) ) )
6 ssrab2 3252 . . . . . . 7  |-  { n  e.  ( ZZ>= `  M )  |  ps }  C_  ( ZZ>=
`  M )
72, 6eqsstri 3199 . . . . . 6  |-  S  C_  ( ZZ>= `  M )
8 uzssz 9561 . . . . . 6  |-  ( ZZ>= `  M )  C_  ZZ
97, 8sstri 3176 . . . . 5  |-  S  C_  ZZ
10 zssre 9274 . . . . 5  |-  ZZ  C_  RR
119, 10sstri 3176 . . . 4  |-  S  C_  RR
1211a1i 9 . . 3  |-  ( ph  ->  S  C_  RR )
135, 12infrenegsupex 9608 . 2  |-  ( ph  -> inf ( S ,  RR ,  <  )  =  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  ) )
141, 2, 3, 4infssuzex 11964 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  S  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  S  z  <  y ) ) )
1514, 12infsupneg 9610 . . . . 5  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  S }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  S } y  < 
z ) ) )
16 negeq 8164 . . . . . . . . . 10  |-  ( w  =  u  ->  -u w  =  -u u )
1716eleq1d 2256 . . . . . . . . 9  |-  ( w  =  u  ->  ( -u w  e.  S  <->  -u u  e.  S ) )
1817elrab 2905 . . . . . . . 8  |-  ( u  e.  { w  e.  RR  |  -u w  e.  S }  <->  ( u  e.  RR  /\  -u u  e.  S ) )
199sseli 3163 . . . . . . . . . 10  |-  ( -u u  e.  S  ->  -u u  e.  ZZ )
2019adantl 277 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  -u u  e.  ZZ )
21 simpl 109 . . . . . . . . . . 11  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  u  e.  RR )
2221recnd 8000 . . . . . . . . . 10  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  u  e.  CC )
23 znegclb 9300 . . . . . . . . . 10  |-  ( u  e.  CC  ->  (
u  e.  ZZ  <->  -u u  e.  ZZ ) )
2422, 23syl 14 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  ( u  e.  ZZ  <->  -u u  e.  ZZ ) )
2520, 24mpbird 167 . . . . . . . 8  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  u  e.  ZZ )
2618, 25sylbi 121 . . . . . . 7  |-  ( u  e.  { w  e.  RR  |  -u w  e.  S }  ->  u  e.  ZZ )
2726ssriv 3171 . . . . . 6  |-  { w  e.  RR  |  -u w  e.  S }  C_  ZZ
2827a1i 9 . . . . 5  |-  ( ph  ->  { w  e.  RR  |  -u w  e.  S }  C_  ZZ )
2915, 28suprzclex 9365 . . . 4  |-  ( ph  ->  sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  {
w  e.  RR  |  -u w  e.  S }
)
30 nfrab1 2667 . . . . . 6  |-  F/_ w { w  e.  RR  |  -u w  e.  S }
31 nfcv 2329 . . . . . 6  |-  F/_ w RR
32 nfcv 2329 . . . . . 6  |-  F/_ w  <
3330, 31, 32nfsup 7005 . . . . 5  |-  F/_ w sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )
3433nfneg 8168 . . . . . 6  |-  F/_ w -u
sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )
3534nfel1 2340 . . . . 5  |-  F/ w -u
sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S
36 negeq 8164 . . . . . 6  |-  ( w  =  sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  -> 
-u w  =  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  ) )
3736eleq1d 2256 . . . . 5  |-  ( w  =  sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  ->  ( -u w  e.  S  <->  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S ) )
3833, 31, 35, 37elrabf 2903 . . . 4  |-  ( sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  {
w  e.  RR  |  -u w  e.  S }  <->  ( sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  RR  /\  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S
) )
3929, 38sylib 122 . . 3  |-  ( ph  ->  ( sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  RR  /\  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S ) )
4039simprd 114 . 2  |-  ( ph  -> 
-u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S
)
4113, 40eqeltrd 2264 1  |-  ( ph  -> inf ( S ,  RR ,  <  )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1363    e. wcel 2158   {crab 2469    C_ wss 3141   ` cfv 5228  (class class class)co 5888   supcsup 6995  infcinf 6996   CCcc 7823   RRcr 7824    < clt 8006   -ucneg 8143   ZZcz 9267   ZZ>=cuz 9542   ...cfz 10022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-sup 6997  df-inf 6998  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543  df-fz 10023  df-fzo 10157
This theorem is referenced by:  zsupssdc  11969  nnmindc  12049  lcmval  12077  lcmcllem  12081  odzcllem  12256
  Copyright terms: Public domain W3C validator