ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infssuzcldc Unicode version

Theorem infssuzcldc 10415
Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.)
Hypotheses
Ref Expression
infssuzledc.m  |-  ( ph  ->  M  e.  ZZ )
infssuzledc.s  |-  S  =  { n  e.  (
ZZ>= `  M )  |  ps }
infssuzledc.a  |-  ( ph  ->  A  e.  S )
infssuzledc.dc  |-  ( (
ph  /\  n  e.  ( M ... A ) )  -> DECID  ps )
Assertion
Ref Expression
infssuzcldc  |-  ( ph  -> inf ( S ,  RR ,  <  )  e.  S
)
Distinct variable groups:    A, n    n, M    ph, n
Allowed substitution hints:    ps( n)    S( n)

Proof of Theorem infssuzcldc
Dummy variables  y  w  x  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infssuzledc.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
2 infssuzledc.s . . . 4  |-  S  =  { n  e.  (
ZZ>= `  M )  |  ps }
3 infssuzledc.a . . . 4  |-  ( ph  ->  A  e.  S )
4 infssuzledc.dc . . . 4  |-  ( (
ph  /\  n  e.  ( M ... A ) )  -> DECID  ps )
51, 2, 3, 4infssuzex 10413 . . 3  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  S  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. w  e.  S  w  <  y ) ) )
6 ssrab2 3286 . . . . . . 7  |-  { n  e.  ( ZZ>= `  M )  |  ps }  C_  ( ZZ>=
`  M )
72, 6eqsstri 3233 . . . . . 6  |-  S  C_  ( ZZ>= `  M )
8 uzssz 9703 . . . . . 6  |-  ( ZZ>= `  M )  C_  ZZ
97, 8sstri 3210 . . . . 5  |-  S  C_  ZZ
10 zssre 9414 . . . . 5  |-  ZZ  C_  RR
119, 10sstri 3210 . . . 4  |-  S  C_  RR
1211a1i 9 . . 3  |-  ( ph  ->  S  C_  RR )
135, 12infrenegsupex 9750 . 2  |-  ( ph  -> inf ( S ,  RR ,  <  )  =  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  ) )
141, 2, 3, 4infssuzex 10413 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  S  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  S  z  <  y ) ) )
1514, 12infsupneg 9752 . . . . 5  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  S }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  S } y  < 
z ) ) )
16 negeq 8300 . . . . . . . . . 10  |-  ( w  =  u  ->  -u w  =  -u u )
1716eleq1d 2276 . . . . . . . . 9  |-  ( w  =  u  ->  ( -u w  e.  S  <->  -u u  e.  S ) )
1817elrab 2936 . . . . . . . 8  |-  ( u  e.  { w  e.  RR  |  -u w  e.  S }  <->  ( u  e.  RR  /\  -u u  e.  S ) )
199sseli 3197 . . . . . . . . . 10  |-  ( -u u  e.  S  ->  -u u  e.  ZZ )
2019adantl 277 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  -u u  e.  ZZ )
21 simpl 109 . . . . . . . . . . 11  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  u  e.  RR )
2221recnd 8136 . . . . . . . . . 10  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  u  e.  CC )
23 znegclb 9440 . . . . . . . . . 10  |-  ( u  e.  CC  ->  (
u  e.  ZZ  <->  -u u  e.  ZZ ) )
2422, 23syl 14 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  ( u  e.  ZZ  <->  -u u  e.  ZZ ) )
2520, 24mpbird 167 . . . . . . . 8  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  u  e.  ZZ )
2618, 25sylbi 121 . . . . . . 7  |-  ( u  e.  { w  e.  RR  |  -u w  e.  S }  ->  u  e.  ZZ )
2726ssriv 3205 . . . . . 6  |-  { w  e.  RR  |  -u w  e.  S }  C_  ZZ
2827a1i 9 . . . . 5  |-  ( ph  ->  { w  e.  RR  |  -u w  e.  S }  C_  ZZ )
2915, 28suprzclex 9506 . . . 4  |-  ( ph  ->  sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  {
w  e.  RR  |  -u w  e.  S }
)
30 nfrab1 2688 . . . . . 6  |-  F/_ w { w  e.  RR  |  -u w  e.  S }
31 nfcv 2350 . . . . . 6  |-  F/_ w RR
32 nfcv 2350 . . . . . 6  |-  F/_ w  <
3330, 31, 32nfsup 7120 . . . . 5  |-  F/_ w sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )
3433nfneg 8304 . . . . . 6  |-  F/_ w -u
sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )
3534nfel1 2361 . . . . 5  |-  F/ w -u
sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S
36 negeq 8300 . . . . . 6  |-  ( w  =  sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  -> 
-u w  =  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  ) )
3736eleq1d 2276 . . . . 5  |-  ( w  =  sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  ->  ( -u w  e.  S  <->  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S ) )
3833, 31, 35, 37elrabf 2934 . . . 4  |-  ( sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  {
w  e.  RR  |  -u w  e.  S }  <->  ( sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  RR  /\  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S
) )
3929, 38sylib 122 . . 3  |-  ( ph  ->  ( sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  RR  /\  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S ) )
4039simprd 114 . 2  |-  ( ph  -> 
-u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S
)
4113, 40eqeltrd 2284 1  |-  ( ph  -> inf ( S ,  RR ,  <  )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2178   {crab 2490    C_ wss 3174   ` cfv 5290  (class class class)co 5967   supcsup 7110  infcinf 7111   CCcc 7958   RRcr 7959    < clt 8142   -ucneg 8279   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300
This theorem is referenced by:  zsupssdc  10418  bitsfzolem  12380  nnmindc  12470  nninfctlemfo  12476  lcmval  12500  lcmcllem  12504  odzcllem  12680  4sqlem13m  12841  4sqlem14  12842  4sqlem17  12845  4sqlem18  12846
  Copyright terms: Public domain W3C validator