ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infssuzcldc Unicode version

Theorem infssuzcldc 10380
Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.)
Hypotheses
Ref Expression
infssuzledc.m  |-  ( ph  ->  M  e.  ZZ )
infssuzledc.s  |-  S  =  { n  e.  (
ZZ>= `  M )  |  ps }
infssuzledc.a  |-  ( ph  ->  A  e.  S )
infssuzledc.dc  |-  ( (
ph  /\  n  e.  ( M ... A ) )  -> DECID  ps )
Assertion
Ref Expression
infssuzcldc  |-  ( ph  -> inf ( S ,  RR ,  <  )  e.  S
)
Distinct variable groups:    A, n    n, M    ph, n
Allowed substitution hints:    ps( n)    S( n)

Proof of Theorem infssuzcldc
Dummy variables  y  w  x  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infssuzledc.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
2 infssuzledc.s . . . 4  |-  S  =  { n  e.  (
ZZ>= `  M )  |  ps }
3 infssuzledc.a . . . 4  |-  ( ph  ->  A  e.  S )
4 infssuzledc.dc . . . 4  |-  ( (
ph  /\  n  e.  ( M ... A ) )  -> DECID  ps )
51, 2, 3, 4infssuzex 10378 . . 3  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  S  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. w  e.  S  w  <  y ) ) )
6 ssrab2 3278 . . . . . . 7  |-  { n  e.  ( ZZ>= `  M )  |  ps }  C_  ( ZZ>=
`  M )
72, 6eqsstri 3225 . . . . . 6  |-  S  C_  ( ZZ>= `  M )
8 uzssz 9670 . . . . . 6  |-  ( ZZ>= `  M )  C_  ZZ
97, 8sstri 3202 . . . . 5  |-  S  C_  ZZ
10 zssre 9381 . . . . 5  |-  ZZ  C_  RR
119, 10sstri 3202 . . . 4  |-  S  C_  RR
1211a1i 9 . . 3  |-  ( ph  ->  S  C_  RR )
135, 12infrenegsupex 9717 . 2  |-  ( ph  -> inf ( S ,  RR ,  <  )  =  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  ) )
141, 2, 3, 4infssuzex 10378 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  S  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  S  z  <  y ) ) )
1514, 12infsupneg 9719 . . . . 5  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  S }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  S } y  < 
z ) ) )
16 negeq 8267 . . . . . . . . . 10  |-  ( w  =  u  ->  -u w  =  -u u )
1716eleq1d 2274 . . . . . . . . 9  |-  ( w  =  u  ->  ( -u w  e.  S  <->  -u u  e.  S ) )
1817elrab 2929 . . . . . . . 8  |-  ( u  e.  { w  e.  RR  |  -u w  e.  S }  <->  ( u  e.  RR  /\  -u u  e.  S ) )
199sseli 3189 . . . . . . . . . 10  |-  ( -u u  e.  S  ->  -u u  e.  ZZ )
2019adantl 277 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  -u u  e.  ZZ )
21 simpl 109 . . . . . . . . . . 11  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  u  e.  RR )
2221recnd 8103 . . . . . . . . . 10  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  u  e.  CC )
23 znegclb 9407 . . . . . . . . . 10  |-  ( u  e.  CC  ->  (
u  e.  ZZ  <->  -u u  e.  ZZ ) )
2422, 23syl 14 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  ( u  e.  ZZ  <->  -u u  e.  ZZ ) )
2520, 24mpbird 167 . . . . . . . 8  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  u  e.  ZZ )
2618, 25sylbi 121 . . . . . . 7  |-  ( u  e.  { w  e.  RR  |  -u w  e.  S }  ->  u  e.  ZZ )
2726ssriv 3197 . . . . . 6  |-  { w  e.  RR  |  -u w  e.  S }  C_  ZZ
2827a1i 9 . . . . 5  |-  ( ph  ->  { w  e.  RR  |  -u w  e.  S }  C_  ZZ )
2915, 28suprzclex 9473 . . . 4  |-  ( ph  ->  sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  {
w  e.  RR  |  -u w  e.  S }
)
30 nfrab1 2686 . . . . . 6  |-  F/_ w { w  e.  RR  |  -u w  e.  S }
31 nfcv 2348 . . . . . 6  |-  F/_ w RR
32 nfcv 2348 . . . . . 6  |-  F/_ w  <
3330, 31, 32nfsup 7096 . . . . 5  |-  F/_ w sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )
3433nfneg 8271 . . . . . 6  |-  F/_ w -u
sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )
3534nfel1 2359 . . . . 5  |-  F/ w -u
sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S
36 negeq 8267 . . . . . 6  |-  ( w  =  sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  -> 
-u w  =  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  ) )
3736eleq1d 2274 . . . . 5  |-  ( w  =  sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  ->  ( -u w  e.  S  <->  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S ) )
3833, 31, 35, 37elrabf 2927 . . . 4  |-  ( sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  {
w  e.  RR  |  -u w  e.  S }  <->  ( sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  RR  /\  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S
) )
3929, 38sylib 122 . . 3  |-  ( ph  ->  ( sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  RR  /\  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S ) )
4039simprd 114 . 2  |-  ( ph  -> 
-u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S
)
4113, 40eqeltrd 2282 1  |-  ( ph  -> inf ( S ,  RR ,  <  )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2176   {crab 2488    C_ wss 3166   ` cfv 5272  (class class class)co 5946   supcsup 7086  infcinf 7087   CCcc 7925   RRcr 7926    < clt 8109   -ucneg 8246   ZZcz 9374   ZZ>=cuz 9650   ...cfz 10132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133  df-fzo 10267
This theorem is referenced by:  zsupssdc  10383  bitsfzolem  12298  nnmindc  12388  nninfctlemfo  12394  lcmval  12418  lcmcllem  12422  odzcllem  12598  4sqlem13m  12759  4sqlem14  12760  4sqlem17  12763  4sqlem18  12764
  Copyright terms: Public domain W3C validator