ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infssuzcldc Unicode version

Theorem infssuzcldc 11880
Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.)
Hypotheses
Ref Expression
infssuzledc.m  |-  ( ph  ->  M  e.  ZZ )
infssuzledc.s  |-  S  =  { n  e.  (
ZZ>= `  M )  |  ps }
infssuzledc.a  |-  ( ph  ->  A  e.  S )
infssuzledc.dc  |-  ( (
ph  /\  n  e.  ( M ... A ) )  -> DECID  ps )
Assertion
Ref Expression
infssuzcldc  |-  ( ph  -> inf ( S ,  RR ,  <  )  e.  S
)
Distinct variable groups:    A, n    n, M    ph, n
Allowed substitution hints:    ps( n)    S( n)

Proof of Theorem infssuzcldc
Dummy variables  y  w  x  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infssuzledc.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
2 infssuzledc.s . . . 4  |-  S  =  { n  e.  (
ZZ>= `  M )  |  ps }
3 infssuzledc.a . . . 4  |-  ( ph  ->  A  e.  S )
4 infssuzledc.dc . . . 4  |-  ( (
ph  /\  n  e.  ( M ... A ) )  -> DECID  ps )
51, 2, 3, 4infssuzex 11878 . . 3  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  S  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. w  e.  S  w  <  y ) ) )
6 ssrab2 3226 . . . . . . 7  |-  { n  e.  ( ZZ>= `  M )  |  ps }  C_  ( ZZ>=
`  M )
72, 6eqsstri 3173 . . . . . 6  |-  S  C_  ( ZZ>= `  M )
8 uzssz 9481 . . . . . 6  |-  ( ZZ>= `  M )  C_  ZZ
97, 8sstri 3150 . . . . 5  |-  S  C_  ZZ
10 zssre 9194 . . . . 5  |-  ZZ  C_  RR
119, 10sstri 3150 . . . 4  |-  S  C_  RR
1211a1i 9 . . 3  |-  ( ph  ->  S  C_  RR )
135, 12infrenegsupex 9528 . 2  |-  ( ph  -> inf ( S ,  RR ,  <  )  =  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  ) )
141, 2, 3, 4infssuzex 11878 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  S  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  S  z  <  y ) ) )
1514, 12infsupneg 9530 . . . . 5  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  S }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  S } y  < 
z ) ) )
16 negeq 8087 . . . . . . . . . 10  |-  ( w  =  u  ->  -u w  =  -u u )
1716eleq1d 2234 . . . . . . . . 9  |-  ( w  =  u  ->  ( -u w  e.  S  <->  -u u  e.  S ) )
1817elrab 2881 . . . . . . . 8  |-  ( u  e.  { w  e.  RR  |  -u w  e.  S }  <->  ( u  e.  RR  /\  -u u  e.  S ) )
199sseli 3137 . . . . . . . . . 10  |-  ( -u u  e.  S  ->  -u u  e.  ZZ )
2019adantl 275 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  -u u  e.  ZZ )
21 simpl 108 . . . . . . . . . . 11  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  u  e.  RR )
2221recnd 7923 . . . . . . . . . 10  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  u  e.  CC )
23 znegclb 9220 . . . . . . . . . 10  |-  ( u  e.  CC  ->  (
u  e.  ZZ  <->  -u u  e.  ZZ ) )
2422, 23syl 14 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  ( u  e.  ZZ  <->  -u u  e.  ZZ ) )
2520, 24mpbird 166 . . . . . . . 8  |-  ( ( u  e.  RR  /\  -u u  e.  S )  ->  u  e.  ZZ )
2618, 25sylbi 120 . . . . . . 7  |-  ( u  e.  { w  e.  RR  |  -u w  e.  S }  ->  u  e.  ZZ )
2726ssriv 3145 . . . . . 6  |-  { w  e.  RR  |  -u w  e.  S }  C_  ZZ
2827a1i 9 . . . . 5  |-  ( ph  ->  { w  e.  RR  |  -u w  e.  S }  C_  ZZ )
2915, 28suprzclex 9285 . . . 4  |-  ( ph  ->  sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  {
w  e.  RR  |  -u w  e.  S }
)
30 nfrab1 2644 . . . . . 6  |-  F/_ w { w  e.  RR  |  -u w  e.  S }
31 nfcv 2307 . . . . . 6  |-  F/_ w RR
32 nfcv 2307 . . . . . 6  |-  F/_ w  <
3330, 31, 32nfsup 6953 . . . . 5  |-  F/_ w sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )
3433nfneg 8091 . . . . . 6  |-  F/_ w -u
sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )
3534nfel1 2318 . . . . 5  |-  F/ w -u
sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S
36 negeq 8087 . . . . . 6  |-  ( w  =  sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  -> 
-u w  =  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  ) )
3736eleq1d 2234 . . . . 5  |-  ( w  =  sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  ->  ( -u w  e.  S  <->  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S ) )
3833, 31, 35, 37elrabf 2879 . . . 4  |-  ( sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  {
w  e.  RR  |  -u w  e.  S }  <->  ( sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  RR  /\  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S
) )
3929, 38sylib 121 . . 3  |-  ( ph  ->  ( sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  RR  /\  -u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S ) )
4039simprd 113 . 2  |-  ( ph  -> 
-u sup ( { w  e.  RR  |  -u w  e.  S } ,  RR ,  <  )  e.  S
)
4113, 40eqeltrd 2242 1  |-  ( ph  -> inf ( S ,  RR ,  <  )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    = wceq 1343    e. wcel 2136   {crab 2447    C_ wss 3115   ` cfv 5187  (class class class)co 5841   supcsup 6943  infcinf 6944   CCcc 7747   RRcr 7748    < clt 7929   -ucneg 8066   ZZcz 9187   ZZ>=cuz 9462   ...cfz 9940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-po 4273  df-iso 4274  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463  df-fz 9941  df-fzo 10074
This theorem is referenced by:  zsupssdc  11883  nnmindc  11963  lcmval  11991  lcmcllem  11995  odzcllem  12170
  Copyright terms: Public domain W3C validator