ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfoprab1 Unicode version

Theorem nfoprab1 5891
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Assertion
Ref Expression
nfoprab1  |-  F/_ x { <. <. x ,  y
>. ,  z >.  | 
ph }

Proof of Theorem nfoprab1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5846 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
2 nfe1 1484 . . 3  |-  F/ x E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )
32nfab 2313 . 2  |-  F/_ x { w  |  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) }
41, 3nfcxfr 2305 1  |-  F/_ x { <. <. x ,  y
>. ,  z >.  | 
ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343   E.wex 1480   {cab 2151   F/_wnfc 2295   <.cop 3579   {coprab 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-oprab 5846
This theorem is referenced by:  ssoprab2b  5899  nfmpo1  5909  ovi3  5978  tposoprab  6248
  Copyright terms: Public domain W3C validator