ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfoprab1 Unicode version

Theorem nfoprab1 6053
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Assertion
Ref Expression
nfoprab1  |-  F/_ x { <. <. x ,  y
>. ,  z >.  | 
ph }

Proof of Theorem nfoprab1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-oprab 6005 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
2 nfe1 1542 . . 3  |-  F/ x E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )
32nfab 2377 . 2  |-  F/_ x { w  |  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) }
41, 3nfcxfr 2369 1  |-  F/_ x { <. <. x ,  y
>. ,  z >.  | 
ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   E.wex 1538   {cab 2215   F/_wnfc 2359   <.cop 3669   {coprab 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-oprab 6005
This theorem is referenced by:  ssoprab2b  6061  nfmpo1  6071  ovi3  6142  tposoprab  6426
  Copyright terms: Public domain W3C validator