ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpo1 Unicode version

Theorem nfmpo1 5944
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo1  |-  F/_ x
( x  e.  A ,  y  e.  B  |->  C )

Proof of Theorem nfmpo1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-mpo 5882 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
2 nfoprab1 5926 . 2  |-  F/_ x { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
31, 2nfcxfr 2316 1  |-  F/_ x
( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    e. wcel 2148   F/_wnfc 2306   {coprab 5878    e. cmpo 5879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-oprab 5881  df-mpo 5882
This theorem is referenced by:  ovmpos  6000  ov2gf  6001  ovmpodxf  6002  ovmpodf  6008  ovmpodv2  6010  xpcomco  6828  mapxpen  6850  cnmpt21  13876  cnmpt2t  13878  cnmptcom  13883
  Copyright terms: Public domain W3C validator