ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpo1 Unicode version

Theorem nfmpo1 5878
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo1  |-  F/_ x
( x  e.  A ,  y  e.  B  |->  C )

Proof of Theorem nfmpo1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-mpo 5819 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
2 nfoprab1 5860 . 2  |-  F/_ x { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
31, 2nfcxfr 2293 1  |-  F/_ x
( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1332    e. wcel 2125   F/_wnfc 2283   {coprab 5815    e. cmpo 5816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-oprab 5818  df-mpo 5819
This theorem is referenced by:  ovmpos  5934  ov2gf  5935  ovmpodxf  5936  ovmpodf  5942  ovmpodv2  5944  xpcomco  6760  mapxpen  6782  cnmpt21  12630  cnmpt2t  12632  cnmptcom  12637
  Copyright terms: Public domain W3C validator