ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposoprab Unicode version

Theorem tposoprab 6256
Description: Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposoprab.1  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
Assertion
Ref Expression
tposoprab  |- tpos  F  =  { <. <. y ,  x >. ,  z >.  |  ph }
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)    F( x, y, z)

Proof of Theorem tposoprab
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tposoprab.1 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
21tposeqi 6253 . 2  |- tpos  F  = tpos  { <. <. x ,  y
>. ,  z >.  | 
ph }
3 reldmoprab 5935 . . 3  |-  Rel  dom  {
<. <. x ,  y
>. ,  z >.  | 
ph }
4 dftpos3 6238 . . 3  |-  ( Rel 
dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  -> tpos  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. a ,  b >. ,  c
>.  |  <. b ,  a >. { <. <. x ,  y >. ,  z
>.  |  ph } c } )
53, 4ax-mp 5 . 2  |- tpos  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. a ,  b >. ,  c
>.  |  <. b ,  a >. { <. <. x ,  y >. ,  z
>.  |  ph } c }
6 nfcv 2312 . . . . 5  |-  F/_ y <. b ,  a >.
7 nfoprab2 5900 . . . . 5  |-  F/_ y { <. <. x ,  y
>. ,  z >.  | 
ph }
8 nfcv 2312 . . . . 5  |-  F/_ y
c
96, 7, 8nfbr 4033 . . . 4  |-  F/ y
<. b ,  a >. { <. <. x ,  y
>. ,  z >.  | 
ph } c
10 nfcv 2312 . . . . 5  |-  F/_ x <. b ,  a >.
11 nfoprab1 5899 . . . . 5  |-  F/_ x { <. <. x ,  y
>. ,  z >.  | 
ph }
12 nfcv 2312 . . . . 5  |-  F/_ x
c
1310, 11, 12nfbr 4033 . . . 4  |-  F/ x <. b ,  a >. { <. <. x ,  y
>. ,  z >.  | 
ph } c
14 nfv 1521 . . . 4  |-  F/ a
<. x ,  y >. { <. <. x ,  y
>. ,  z >.  | 
ph } c
15 nfv 1521 . . . 4  |-  F/ b
<. x ,  y >. { <. <. x ,  y
>. ,  z >.  | 
ph } c
16 opeq12 3765 . . . . . 6  |-  ( ( b  =  x  /\  a  =  y )  -> 
<. b ,  a >.  =  <. x ,  y
>. )
1716ancoms 266 . . . . 5  |-  ( ( a  =  y  /\  b  =  x )  -> 
<. b ,  a >.  =  <. x ,  y
>. )
1817breq1d 3997 . . . 4  |-  ( ( a  =  y  /\  b  =  x )  ->  ( <. b ,  a
>. { <. <. x ,  y
>. ,  z >.  | 
ph } c  <->  <. x ,  y >. { <. <. x ,  y >. ,  z
>.  |  ph } c ) )
199, 13, 14, 15, 18cbvoprab12 5924 . . 3  |-  { <. <.
a ,  b >. ,  c >.  |  <. b ,  a >. { <. <.
x ,  y >. ,  z >.  |  ph } c }  =  { <. <. y ,  x >. ,  c >.  |  <. x ,  y >. { <. <.
x ,  y >. ,  z >.  |  ph } c }
20 nfcv 2312 . . . . 5  |-  F/_ z <. x ,  y >.
21 nfoprab3 5901 . . . . 5  |-  F/_ z { <. <. x ,  y
>. ,  z >.  | 
ph }
22 nfcv 2312 . . . . 5  |-  F/_ z
c
2320, 21, 22nfbr 4033 . . . 4  |-  F/ z
<. x ,  y >. { <. <. x ,  y
>. ,  z >.  | 
ph } c
24 nfv 1521 . . . 4  |-  F/ c
ph
25 breq2 3991 . . . . 5  |-  ( c  =  z  ->  ( <. x ,  y >. { <. <. x ,  y
>. ,  z >.  | 
ph } c  <->  <. x ,  y >. { <. <. x ,  y >. ,  z
>.  |  ph } z ) )
26 df-br 3988 . . . . . 6  |-  ( <.
x ,  y >. { <. <. x ,  y
>. ,  z >.  | 
ph } z  <->  <. <. x ,  y >. ,  z
>.  e.  { <. <. x ,  y >. ,  z
>.  |  ph } )
27 oprabid 5882 . . . . . 6  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ph )
2826, 27bitri 183 . . . . 5  |-  ( <.
x ,  y >. { <. <. x ,  y
>. ,  z >.  | 
ph } z  <->  ph )
2925, 28bitrdi 195 . . . 4  |-  ( c  =  z  ->  ( <. x ,  y >. { <. <. x ,  y
>. ,  z >.  | 
ph } c  <->  ph ) )
3023, 24, 29cbvoprab3 5926 . . 3  |-  { <. <.
y ,  x >. ,  c >.  |  <. x ,  y >. { <. <.
x ,  y >. ,  z >.  |  ph } c }  =  { <. <. y ,  x >. ,  z >.  |  ph }
3119, 30eqtri 2191 . 2  |-  { <. <.
a ,  b >. ,  c >.  |  <. b ,  a >. { <. <.
x ,  y >. ,  z >.  |  ph } c }  =  { <. <. y ,  x >. ,  z >.  |  ph }
322, 5, 313eqtri 2195 1  |- tpos  F  =  { <. <. y ,  x >. ,  z >.  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   <.cop 3584   class class class wbr 3987   dom cdm 4609   Rel wrel 4614   {coprab 5851  tpos ctpos 6220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-fv 5204  df-oprab 5854  df-tpos 6221
This theorem is referenced by:  tposmpo  6257
  Copyright terms: Public domain W3C validator