Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tposoprab | Unicode version |
Description: Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposoprab.1 |
Ref | Expression |
---|---|
tposoprab | tpos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposoprab.1 | . . 3 | |
2 | 1 | tposeqi 6245 | . 2 tpos tpos |
3 | reldmoprab 5927 | . . 3 | |
4 | dftpos3 6230 | . . 3 tpos | |
5 | 3, 4 | ax-mp 5 | . 2 tpos |
6 | nfcv 2308 | . . . . 5 | |
7 | nfoprab2 5892 | . . . . 5 | |
8 | nfcv 2308 | . . . . 5 | |
9 | 6, 7, 8 | nfbr 4028 | . . . 4 |
10 | nfcv 2308 | . . . . 5 | |
11 | nfoprab1 5891 | . . . . 5 | |
12 | nfcv 2308 | . . . . 5 | |
13 | 10, 11, 12 | nfbr 4028 | . . . 4 |
14 | nfv 1516 | . . . 4 | |
15 | nfv 1516 | . . . 4 | |
16 | opeq12 3760 | . . . . . 6 | |
17 | 16 | ancoms 266 | . . . . 5 |
18 | 17 | breq1d 3992 | . . . 4 |
19 | 9, 13, 14, 15, 18 | cbvoprab12 5916 | . . 3 |
20 | nfcv 2308 | . . . . 5 | |
21 | nfoprab3 5893 | . . . . 5 | |
22 | nfcv 2308 | . . . . 5 | |
23 | 20, 21, 22 | nfbr 4028 | . . . 4 |
24 | nfv 1516 | . . . 4 | |
25 | breq2 3986 | . . . . 5 | |
26 | df-br 3983 | . . . . . 6 | |
27 | oprabid 5874 | . . . . . 6 | |
28 | 26, 27 | bitri 183 | . . . . 5 |
29 | 25, 28 | bitrdi 195 | . . . 4 |
30 | 23, 24, 29 | cbvoprab3 5918 | . . 3 |
31 | 19, 30 | eqtri 2186 | . 2 |
32 | 2, 5, 31 | 3eqtri 2190 | 1 tpos |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wcel 2136 cop 3579 class class class wbr 3982 cdm 4604 wrel 4609 coprab 5843 tpos ctpos 6212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-oprab 5846 df-tpos 6213 |
This theorem is referenced by: tposmpo 6249 |
Copyright terms: Public domain | W3C validator |