Proof of Theorem ovi3
Step | Hyp | Ref
| Expression |
1 | | ovi3.1 |
. . . 4
|
2 | | elex 2723 |
. . . 4
|
3 | 1, 2 | syl 14 |
. . 3
|
4 | | isset 2718 |
. . 3
|
5 | 3, 4 | sylib 121 |
. 2
|
6 | | nfv 1508 |
. . 3
|
7 | | nfcv 2299 |
. . . . 5
|
8 | | ovi3.3 |
. . . . . 6
|
9 | | nfoprab3 5866 |
. . . . . 6
|
10 | 8, 9 | nfcxfr 2296 |
. . . . 5
|
11 | | nfcv 2299 |
. . . . 5
|
12 | 7, 10, 11 | nfov 5845 |
. . . 4
|
13 | 12 | nfeq1 2309 |
. . 3
|
14 | | ovi3.2 |
. . . . . . 7
|
15 | 14 | eqeq2d 2169 |
. . . . . 6
|
16 | 15 | copsex4g 4206 |
. . . . 5
|
17 | | opelxpi 4615 |
. . . . . 6
|
18 | | opelxpi 4615 |
. . . . . 6
|
19 | | nfcv 2299 |
. . . . . . 7
|
20 | | nfcv 2299 |
. . . . . . 7
|
21 | | nfcv 2299 |
. . . . . . 7
|
22 | | nfv 1508 |
. . . . . . . 8
|
23 | | nfoprab1 5864 |
. . . . . . . . . . 11
|
24 | 8, 23 | nfcxfr 2296 |
. . . . . . . . . 10
|
25 | | nfcv 2299 |
. . . . . . . . . 10
|
26 | 19, 24, 25 | nfov 5845 |
. . . . . . . . 9
|
27 | 26 | nfeq1 2309 |
. . . . . . . 8
|
28 | 22, 27 | nfim 1552 |
. . . . . . 7
|
29 | | nfv 1508 |
. . . . . . . 8
|
30 | | nfoprab2 5865 |
. . . . . . . . . . 11
|
31 | 8, 30 | nfcxfr 2296 |
. . . . . . . . . 10
|
32 | 20, 31, 21 | nfov 5845 |
. . . . . . . . 9
|
33 | 32 | nfeq1 2309 |
. . . . . . . 8
|
34 | 29, 33 | nfim 1552 |
. . . . . . 7
|
35 | | eqeq1 2164 |
. . . . . . . . . . 11
|
36 | 35 | anbi1d 461 |
. . . . . . . . . 10
|
37 | 36 | anbi1d 461 |
. . . . . . . . 9
|
38 | 37 | 4exbidv 1850 |
. . . . . . . 8
|
39 | | oveq1 5825 |
. . . . . . . . 9
|
40 | 39 | eqeq1d 2166 |
. . . . . . . 8
|
41 | 38, 40 | imbi12d 233 |
. . . . . . 7
|
42 | | eqeq1 2164 |
. . . . . . . . . . 11
|
43 | 42 | anbi2d 460 |
. . . . . . . . . 10
|
44 | 43 | anbi1d 461 |
. . . . . . . . 9
|
45 | 44 | 4exbidv 1850 |
. . . . . . . 8
|
46 | | oveq2 5826 |
. . . . . . . . 9
|
47 | 46 | eqeq1d 2166 |
. . . . . . . 8
|
48 | 45, 47 | imbi12d 233 |
. . . . . . 7
|
49 | | moeq 2887 |
. . . . . . . . . . . 12
|
50 | 49 | mosubop 4649 |
. . . . . . . . . . 11
|
51 | 50 | mosubop 4649 |
. . . . . . . . . 10
|
52 | | anass 399 |
. . . . . . . . . . . . . 14
|
53 | 52 | 2exbii 1586 |
. . . . . . . . . . . . 13
|
54 | | 19.42vv 1891 |
. . . . . . . . . . . . 13
|
55 | 53, 54 | bitri 183 |
. . . . . . . . . . . 12
|
56 | 55 | 2exbii 1586 |
. . . . . . . . . . 11
|
57 | 56 | mobii 2043 |
. . . . . . . . . 10
|
58 | 51, 57 | mpbir 145 |
. . . . . . . . 9
|
59 | 58 | a1i 9 |
. . . . . . . 8
|
60 | 59, 8 | ovidi 5933 |
. . . . . . 7
|
61 | 19, 20, 21, 28, 34, 41, 48, 60 | vtocl2gaf 2779 |
. . . . . 6
|
62 | 17, 18, 61 | syl2an 287 |
. . . . 5
|
63 | 16, 62 | sylbird 169 |
. . . 4
|
64 | | eqeq2 2167 |
. . . 4
|
65 | 63, 64 | mpbidi 150 |
. . 3
|
66 | 6, 13, 65 | exlimd 1577 |
. 2
|
67 | 5, 66 | mpd 13 |
1
|