ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovi3 Unicode version

Theorem ovi3 5951
Description: The value of an operation class abstraction. Special case. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovi3.1  |-  ( ( ( A  e.  H  /\  B  e.  H
)  /\  ( C  e.  H  /\  D  e.  H ) )  ->  S  e.  ( H  X.  H ) )
ovi3.2  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  R  =  S )
ovi3.3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( H  X.  H
)  /\  y  e.  ( H  X.  H
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) ) }
Assertion
Ref Expression
ovi3  |-  ( ( ( A  e.  H  /\  B  e.  H
)  /\  ( C  e.  H  /\  D  e.  H ) )  -> 
( <. A ,  B >. F <. C ,  D >. )  =  S )
Distinct variable groups:    u, f, v, w, x, y, z, A    B, f, u, v, w, x, y, z   
x, R, y, z    C, f, u, v, w, y, z    D, f, u, v, w, y, z    f, H, u, v, w, x, y, z    S, f, u, v, w, z
Allowed substitution hints:    C( x)    D( x)    R( w, v, u, f)    S( x, y)    F( x, y, z, w, v, u, f)

Proof of Theorem ovi3
StepHypRef Expression
1 ovi3.1 . . . 4  |-  ( ( ( A  e.  H  /\  B  e.  H
)  /\  ( C  e.  H  /\  D  e.  H ) )  ->  S  e.  ( H  X.  H ) )
2 elex 2723 . . . 4  |-  ( S  e.  ( H  X.  H )  ->  S  e.  _V )
31, 2syl 14 . . 3  |-  ( ( ( A  e.  H  /\  B  e.  H
)  /\  ( C  e.  H  /\  D  e.  H ) )  ->  S  e.  _V )
4 isset 2718 . . 3  |-  ( S  e.  _V  <->  E. z 
z  =  S )
53, 4sylib 121 . 2  |-  ( ( ( A  e.  H  /\  B  e.  H
)  /\  ( C  e.  H  /\  D  e.  H ) )  ->  E. z  z  =  S )
6 nfv 1508 . . 3  |-  F/ z ( ( A  e.  H  /\  B  e.  H )  /\  ( C  e.  H  /\  D  e.  H )
)
7 nfcv 2299 . . . . 5  |-  F/_ z <. A ,  B >.
8 ovi3.3 . . . . . 6  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( H  X.  H
)  /\  y  e.  ( H  X.  H
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) ) }
9 nfoprab3 5866 . . . . . 6  |-  F/_ z { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( H  X.  H
)  /\  y  e.  ( H  X.  H
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) ) }
108, 9nfcxfr 2296 . . . . 5  |-  F/_ z F
11 nfcv 2299 . . . . 5  |-  F/_ z <. C ,  D >.
127, 10, 11nfov 5845 . . . 4  |-  F/_ z
( <. A ,  B >. F <. C ,  D >. )
1312nfeq1 2309 . . 3  |-  F/ z ( <. A ,  B >. F <. C ,  D >. )  =  S
14 ovi3.2 . . . . . . 7  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  R  =  S )
1514eqeq2d 2169 . . . . . 6  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( z  =  R  <-> 
z  =  S ) )
1615copsex4g 4206 . . . . 5  |-  ( ( ( A  e.  H  /\  B  e.  H
)  /\  ( C  e.  H  /\  D  e.  H ) )  -> 
( E. w E. v E. u E. f
( ( <. A ,  B >.  =  <. w ,  v >.  /\  <. C ,  D >.  =  <. u ,  f >. )  /\  z  =  R
)  <->  z  =  S ) )
17 opelxpi 4615 . . . . . 6  |-  ( ( A  e.  H  /\  B  e.  H )  -> 
<. A ,  B >.  e.  ( H  X.  H
) )
18 opelxpi 4615 . . . . . 6  |-  ( ( C  e.  H  /\  D  e.  H )  -> 
<. C ,  D >.  e.  ( H  X.  H
) )
19 nfcv 2299 . . . . . . 7  |-  F/_ x <. A ,  B >.
20 nfcv 2299 . . . . . . 7  |-  F/_ y <. A ,  B >.
21 nfcv 2299 . . . . . . 7  |-  F/_ y <. C ,  D >.
22 nfv 1508 . . . . . . . 8  |-  F/ x E. w E. v E. u E. f ( ( <. A ,  B >.  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
)
23 nfoprab1 5864 . . . . . . . . . . 11  |-  F/_ x { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( H  X.  H
)  /\  y  e.  ( H  X.  H
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) ) }
248, 23nfcxfr 2296 . . . . . . . . . 10  |-  F/_ x F
25 nfcv 2299 . . . . . . . . . 10  |-  F/_ x
y
2619, 24, 25nfov 5845 . . . . . . . . 9  |-  F/_ x
( <. A ,  B >. F y )
2726nfeq1 2309 . . . . . . . 8  |-  F/ x
( <. A ,  B >. F y )  =  z
2822, 27nfim 1552 . . . . . . 7  |-  F/ x
( E. w E. v E. u E. f
( ( <. A ,  B >.  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  ->  ( <. A ,  B >. F y )  =  z )
29 nfv 1508 . . . . . . . 8  |-  F/ y E. w E. v E. u E. f ( ( <. A ,  B >.  =  <. w ,  v
>.  /\  <. C ,  D >.  =  <. u ,  f
>. )  /\  z  =  R )
30 nfoprab2 5865 . . . . . . . . . . 11  |-  F/_ y { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( H  X.  H
)  /\  y  e.  ( H  X.  H
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) ) }
318, 30nfcxfr 2296 . . . . . . . . . 10  |-  F/_ y F
3220, 31, 21nfov 5845 . . . . . . . . 9  |-  F/_ y
( <. A ,  B >. F <. C ,  D >. )
3332nfeq1 2309 . . . . . . . 8  |-  F/ y ( <. A ,  B >. F <. C ,  D >. )  =  z
3429, 33nfim 1552 . . . . . . 7  |-  F/ y ( E. w E. v E. u E. f
( ( <. A ,  B >.  =  <. w ,  v >.  /\  <. C ,  D >.  =  <. u ,  f >. )  /\  z  =  R
)  ->  ( <. A ,  B >. F <. C ,  D >. )  =  z )
35 eqeq1 2164 . . . . . . . . . . 11  |-  ( x  =  <. A ,  B >.  ->  ( x  = 
<. w ,  v >.  <->  <. A ,  B >.  = 
<. w ,  v >.
) )
3635anbi1d 461 . . . . . . . . . 10  |-  ( x  =  <. A ,  B >.  ->  ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  <->  (
<. A ,  B >.  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
) )
3736anbi1d 461 . . . . . . . . 9  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  ( ( <. A ,  B >.  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) ) )
38374exbidv 1850 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
)  <->  E. w E. v E. u E. f ( ( <. A ,  B >.  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) ) )
39 oveq1 5825 . . . . . . . . 9  |-  ( x  =  <. A ,  B >.  ->  ( x F y )  =  (
<. A ,  B >. F y ) )
4039eqeq1d 2166 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( ( x F y )  =  z  <->  ( <. A ,  B >. F y )  =  z ) )
4138, 40imbi12d 233 . . . . . . 7  |-  ( x  =  <. A ,  B >.  ->  ( ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  ->  (
x F y )  =  z )  <->  ( E. w E. v E. u E. f ( ( <. A ,  B >.  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  R
)  ->  ( <. A ,  B >. F y )  =  z ) ) )
42 eqeq1 2164 . . . . . . . . . . 11  |-  ( y  =  <. C ,  D >.  ->  ( y  = 
<. u ,  f >.  <->  <. C ,  D >.  = 
<. u ,  f >.
) )
4342anbi2d 460 . . . . . . . . . 10  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  <->  (
<. A ,  B >.  = 
<. w ,  v >.  /\  <. C ,  D >.  =  <. u ,  f
>. ) ) )
4443anbi1d 461 . . . . . . . . 9  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  R
)  <->  ( ( <. A ,  B >.  = 
<. w ,  v >.  /\  <. C ,  D >.  =  <. u ,  f
>. )  /\  z  =  R ) ) )
45444exbidv 1850 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( E. w E. v E. u E. f ( ( <. A ,  B >.  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  R
)  <->  E. w E. v E. u E. f ( ( <. A ,  B >.  =  <. w ,  v
>.  /\  <. C ,  D >.  =  <. u ,  f
>. )  /\  z  =  R ) ) )
46 oveq2 5826 . . . . . . . . 9  |-  ( y  =  <. C ,  D >.  ->  ( <. A ,  B >. F y )  =  ( <. A ,  B >. F <. C ,  D >. ) )
4746eqeq1d 2166 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >. F y )  =  z  <-> 
( <. A ,  B >. F <. C ,  D >. )  =  z ) )
4845, 47imbi12d 233 . . . . . . 7  |-  ( y  =  <. C ,  D >.  ->  ( ( E. w E. v E. u E. f ( ( <. A ,  B >.  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
)  ->  ( <. A ,  B >. F y )  =  z )  <-> 
( E. w E. v E. u E. f
( ( <. A ,  B >.  =  <. w ,  v >.  /\  <. C ,  D >.  =  <. u ,  f >. )  /\  z  =  R
)  ->  ( <. A ,  B >. F <. C ,  D >. )  =  z ) ) )
49 moeq 2887 . . . . . . . . . . . 12  |-  E* z 
z  =  R
5049mosubop 4649 . . . . . . . . . . 11  |-  E* z E. u E. f ( y  =  <. u ,  f >.  /\  z  =  R )
5150mosubop 4649 . . . . . . . . . 10  |-  E* z E. w E. v ( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  R ) )
52 anass 399 . . . . . . . . . . . . . 14  |-  ( ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  ( x  =  <. w ,  v
>.  /\  ( y  = 
<. u ,  f >.  /\  z  =  R
) ) )
53522exbii 1586 . . . . . . . . . . . . 13  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  E. u E. f ( x  = 
<. w ,  v >.  /\  ( y  =  <. u ,  f >.  /\  z  =  R ) ) )
54 19.42vv 1891 . . . . . . . . . . . . 13  |-  ( E. u E. f ( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  R ) )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  R
) ) )
5553, 54bitri 183 . . . . . . . . . . . 12  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  R
) ) )
56552exbii 1586 . . . . . . . . . . 11  |-  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  R ) ) )
5756mobii 2043 . . . . . . . . . 10  |-  ( E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  R
)  <->  E* z E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  R ) ) )
5851, 57mpbir 145 . . . . . . . . 9  |-  E* z E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )
5958a1i 9 . . . . . . . 8  |-  ( ( x  e.  ( H  X.  H )  /\  y  e.  ( H  X.  H ) )  ->  E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) )
6059, 8ovidi 5933 . . . . . . 7  |-  ( ( x  e.  ( H  X.  H )  /\  y  e.  ( H  X.  H ) )  -> 
( E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  R
)  ->  ( x F y )  =  z ) )
6119, 20, 21, 28, 34, 41, 48, 60vtocl2gaf 2779 . . . . . 6  |-  ( (
<. A ,  B >.  e.  ( H  X.  H
)  /\  <. C ,  D >.  e.  ( H  X.  H ) )  ->  ( E. w E. v E. u E. f ( ( <. A ,  B >.  = 
<. w ,  v >.  /\  <. C ,  D >.  =  <. u ,  f
>. )  /\  z  =  R )  ->  ( <. A ,  B >. F
<. C ,  D >. )  =  z ) )
6217, 18, 61syl2an 287 . . . . 5  |-  ( ( ( A  e.  H  /\  B  e.  H
)  /\  ( C  e.  H  /\  D  e.  H ) )  -> 
( E. w E. v E. u E. f
( ( <. A ,  B >.  =  <. w ,  v >.  /\  <. C ,  D >.  =  <. u ,  f >. )  /\  z  =  R
)  ->  ( <. A ,  B >. F <. C ,  D >. )  =  z ) )
6316, 62sylbird 169 . . . 4  |-  ( ( ( A  e.  H  /\  B  e.  H
)  /\  ( C  e.  H  /\  D  e.  H ) )  -> 
( z  =  S  ->  ( <. A ,  B >. F <. C ,  D >. )  =  z ) )
64 eqeq2 2167 . . . 4  |-  ( z  =  S  ->  (
( <. A ,  B >. F <. C ,  D >. )  =  z  <->  ( <. A ,  B >. F <. C ,  D >. )  =  S ) )
6563, 64mpbidi 150 . . 3  |-  ( ( ( A  e.  H  /\  B  e.  H
)  /\  ( C  e.  H  /\  D  e.  H ) )  -> 
( z  =  S  ->  ( <. A ,  B >. F <. C ,  D >. )  =  S ) )
666, 13, 65exlimd 1577 . 2  |-  ( ( ( A  e.  H  /\  B  e.  H
)  /\  ( C  e.  H  /\  D  e.  H ) )  -> 
( E. z  z  =  S  ->  ( <. A ,  B >. F
<. C ,  D >. )  =  S ) )
675, 66mpd 13 1  |-  ( ( ( A  e.  H  /\  B  e.  H
)  /\  ( C  e.  H  /\  D  e.  H ) )  -> 
( <. A ,  B >. F <. C ,  D >. )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335   E.wex 1472   E*wmo 2007    e. wcel 2128   _Vcvv 2712   <.cop 3563    X. cxp 4581  (class class class)co 5818   {coprab 5819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-setind 4494
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-iota 5132  df-fun 5169  df-fv 5175  df-ov 5821  df-oprab 5822
This theorem is referenced by:  oviec  6579  addcnsr  7737  mulcnsr  7738
  Copyright terms: Public domain W3C validator