ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfoprab2 Unicode version

Theorem nfoprab2 5995
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 30-Jul-2012.)
Assertion
Ref Expression
nfoprab2  |-  F/_ y { <. <. x ,  y
>. ,  z >.  | 
ph }

Proof of Theorem nfoprab2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5948 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
2 nfe1 1519 . . . 4  |-  F/ y E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph )
32nfex 1660 . . 3  |-  F/ y E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )
43nfab 2353 . 2  |-  F/_ y { w  |  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) }
51, 4nfcxfr 2345 1  |-  F/_ y { <. <. x ,  y
>. ,  z >.  | 
ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1515   {cab 2191   F/_wnfc 2335   <.cop 3636   {coprab 5945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-oprab 5948
This theorem is referenced by:  ssoprab2b  6002  nfmpo2  6013  ovi3  6083  tposoprab  6366
  Copyright terms: Public domain W3C validator