Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfpr | GIF version |
Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfpr.1 | ⊢ Ⅎ𝑥𝐴 |
nfpr.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfpr | ⊢ Ⅎ𝑥{𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpr2 3608 | . 2 ⊢ {𝐴, 𝐵} = {𝑦 ∣ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)} | |
2 | nfpr.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfeq2 2329 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
4 | nfpr.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfeq2 2329 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐵 |
6 | 3, 5 | nfor 1572 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∨ 𝑦 = 𝐵) |
7 | 6 | nfab 2322 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)} |
8 | 1, 7 | nfcxfr 2314 | 1 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
Colors of variables: wff set class |
Syntax hints: ∨ wo 708 = wceq 1353 {cab 2161 Ⅎwnfc 2304 {cpr 3590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 |
This theorem is referenced by: nfsn 3649 nfop 3790 |
Copyright terms: Public domain | W3C validator |