![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfpr | GIF version |
Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfpr.1 | ⊢ Ⅎ𝑥𝐴 |
nfpr.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfpr | ⊢ Ⅎ𝑥{𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpr2 3613 | . 2 ⊢ {𝐴, 𝐵} = {𝑦 ∣ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)} | |
2 | nfpr.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfeq2 2331 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
4 | nfpr.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfeq2 2331 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐵 |
6 | 3, 5 | nfor 1574 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∨ 𝑦 = 𝐵) |
7 | 6 | nfab 2324 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)} |
8 | 1, 7 | nfcxfr 2316 | 1 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
Colors of variables: wff set class |
Syntax hints: ∨ wo 708 = wceq 1353 {cab 2163 Ⅎwnfc 2306 {cpr 3595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 |
This theorem is referenced by: nfsn 3654 nfop 3796 |
Copyright terms: Public domain | W3C validator |