| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfpr | GIF version | ||
| Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfpr.1 | ⊢ Ⅎ𝑥𝐴 |
| nfpr.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfpr | ⊢ Ⅎ𝑥{𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpr2 3685 | . 2 ⊢ {𝐴, 𝐵} = {𝑦 ∣ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)} | |
| 2 | nfpr.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfeq2 2384 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
| 4 | nfpr.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfeq2 2384 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐵 |
| 6 | 3, 5 | nfor 1620 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∨ 𝑦 = 𝐵) |
| 7 | 6 | nfab 2377 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)} |
| 8 | 1, 7 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 713 = wceq 1395 {cab 2215 Ⅎwnfc 2359 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: nfsn 3726 nfop 3873 |
| Copyright terms: Public domain | W3C validator |