Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elunii | Unicode version |
Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
Ref | Expression |
---|---|
elunii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2230 | . . . . 5 | |
2 | eleq1 2229 | . . . . 5 | |
3 | 1, 2 | anbi12d 465 | . . . 4 |
4 | 3 | spcegv 2814 | . . 3 |
5 | 4 | anabsi7 571 | . 2 |
6 | eluni 3792 | . 2 | |
7 | 5, 6 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-uni 3790 |
This theorem is referenced by: ssuni 3811 unipw 4195 opeluu 4428 sucunielr 4487 unon 4488 ordunisuc2r 4491 tfrlemibxssdm 6295 tfr1onlemsucaccv 6309 tfr1onlembxssdm 6311 tfrcllemsucaccv 6322 tfrcllembxssdm 6324 tgss2 12719 neipsm 12794 unirnblps 13062 unirnbl 13063 blbas 13073 |
Copyright terms: Public domain | W3C validator |