| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elunii | Unicode version | ||
| Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| elunii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 |
. . . . 5
| |
| 2 | eleq1 2268 |
. . . . 5
| |
| 3 | 1, 2 | anbi12d 473 |
. . . 4
|
| 4 | 3 | spcegv 2861 |
. . 3
|
| 5 | 4 | anabsi7 581 |
. 2
|
| 6 | eluni 3853 |
. 2
| |
| 7 | 5, 6 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-uni 3851 |
| This theorem is referenced by: ssuni 3872 unipw 4262 opeluu 4498 sucunielr 4559 unon 4560 ordunisuc2r 4563 tfrlemibxssdm 6415 tfr1onlemsucaccv 6429 tfr1onlembxssdm 6431 tfrcllemsucaccv 6442 tfrcllembxssdm 6444 wrdexb 11008 tgss2 14584 neipsm 14659 unirnblps 14927 unirnbl 14928 blbas 14938 |
| Copyright terms: Public domain | W3C validator |