| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elunii | Unicode version | ||
| Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| elunii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2260 |
. . . . 5
| |
| 2 | eleq1 2259 |
. . . . 5
| |
| 3 | 1, 2 | anbi12d 473 |
. . . 4
|
| 4 | 3 | spcegv 2852 |
. . 3
|
| 5 | 4 | anabsi7 581 |
. 2
|
| 6 | eluni 3843 |
. 2
| |
| 7 | 5, 6 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-uni 3841 |
| This theorem is referenced by: ssuni 3862 unipw 4251 opeluu 4486 sucunielr 4547 unon 4548 ordunisuc2r 4551 tfrlemibxssdm 6394 tfr1onlemsucaccv 6408 tfr1onlembxssdm 6410 tfrcllemsucaccv 6421 tfrcllembxssdm 6423 wrdexb 10964 tgss2 14399 neipsm 14474 unirnblps 14742 unirnbl 14743 blbas 14753 |
| Copyright terms: Public domain | W3C validator |