| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elunii | Unicode version | ||
| Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| elunii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2293 |
. . . . 5
| |
| 2 | eleq1 2292 |
. . . . 5
| |
| 3 | 1, 2 | anbi12d 473 |
. . . 4
|
| 4 | 3 | spcegv 2891 |
. . 3
|
| 5 | 4 | anabsi7 581 |
. 2
|
| 6 | eluni 3891 |
. 2
| |
| 7 | 5, 6 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-uni 3889 |
| This theorem is referenced by: ssuni 3910 unipw 4303 opeluu 4541 sucunielr 4602 unon 4603 ordunisuc2r 4606 tfrlemibxssdm 6473 tfr1onlemsucaccv 6487 tfr1onlembxssdm 6489 tfrcllemsucaccv 6500 tfrcllembxssdm 6502 wrdexb 11083 tgss2 14753 neipsm 14828 unirnblps 15096 unirnbl 15097 blbas 15107 |
| Copyright terms: Public domain | W3C validator |