ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0sscn Unicode version

Theorem nn0sscn 9300
Description: Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nn0sscn  |-  NN0  C_  CC

Proof of Theorem nn0sscn
StepHypRef Expression
1 nn0ssre 9299 . 2  |-  NN0  C_  RR
2 ax-resscn 8017 . 2  |-  RR  C_  CC
31, 2sstri 3202 1  |-  NN0  C_  CC
Colors of variables: wff set class
Syntax hints:    C_ wss 3166   CCcc 7923   RRcr 7924   NN0cn0 9295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022  ax-rnegex 8034
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-int 3886  df-inn 9037  df-n0 9296
This theorem is referenced by:  nn0cn  9305  nn0expcl  10698  fsumnn0cl  11714  fprodnn0cl  11923  eulerthlemrprm  12551  eulerthlema  12552
  Copyright terms: Public domain W3C validator