ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0sscn Unicode version

Theorem nn0sscn 9199
Description: Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nn0sscn  |-  NN0  C_  CC

Proof of Theorem nn0sscn
StepHypRef Expression
1 nn0ssre 9198 . 2  |-  NN0  C_  RR
2 ax-resscn 7921 . 2  |-  RR  C_  CC
31, 2sstri 3179 1  |-  NN0  C_  CC
Colors of variables: wff set class
Syntax hints:    C_ wss 3144   CCcc 7827   RRcr 7828   NN0cn0 9194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4136  ax-cnex 7920  ax-resscn 7921  ax-1re 7923  ax-addrcl 7926  ax-rnegex 7938
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-int 3860  df-inn 8938  df-n0 9195
This theorem is referenced by:  nn0cn  9204  nn0expcl  10552  fsumnn0cl  11429  fprodnn0cl  11638  eulerthlemrprm  12247  eulerthlema  12248
  Copyright terms: Public domain W3C validator