ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0sscn Unicode version

Theorem nn0sscn 9119
Description: Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nn0sscn  |-  NN0  C_  CC

Proof of Theorem nn0sscn
StepHypRef Expression
1 nn0ssre 9118 . 2  |-  NN0  C_  RR
2 ax-resscn 7845 . 2  |-  RR  C_  CC
31, 2sstri 3151 1  |-  NN0  C_  CC
Colors of variables: wff set class
Syntax hints:    C_ wss 3116   CCcc 7751   RRcr 7752   NN0cn0 9114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-rnegex 7862
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-int 3825  df-inn 8858  df-n0 9115
This theorem is referenced by:  nn0cn  9124  nn0expcl  10469  fsumnn0cl  11344  fprodnn0cl  11553  eulerthlemrprm  12161  eulerthlema  12162
  Copyright terms: Public domain W3C validator