![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0cn | Unicode version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0cn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 8678 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 3021 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-cnex 7436 ax-resscn 7437 ax-1re 7439 ax-addrcl 7442 ax-rnegex 7454 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-sn 3452 df-int 3689 df-inn 8423 df-n0 8674 |
This theorem is referenced by: nn0nnaddcl 8704 elnn0nn 8715 nn0n0n1ge2 8817 uzaddcl 9074 fzctr 9544 nn0split 9547 zpnn0elfzo1 9619 ubmelm1fzo 9637 subfzo0 9653 modqmuladdnn0 9775 addmodidr 9780 modfzo0difsn 9802 nn0ennn 9840 expadd 9997 expmul 10000 bernneq 10074 bernneq2 10075 faclbnd 10149 faclbnd6 10152 bccmpl 10162 bcn0 10163 bcnn 10165 bcnp1n 10167 bcn2 10172 bcp1m1 10173 bcpasc 10174 bcn2p1 10178 hashfzo0 10231 hashfz0 10233 fisum0diag2 10841 hashiun 10872 binom1dif 10881 bcxmas 10883 geolim 10905 efaddlem 10964 efexp 10972 eftlub 10980 demoivreALT 11063 nn0ob 11186 modremain 11207 mulgcdr 11285 nn0seqcvgd 11301 znnen 11489 |
Copyright terms: Public domain | W3C validator |