![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0cn | Unicode version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0cn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 9245 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 3175 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-int 3871 df-inn 8983 df-n0 9241 |
This theorem is referenced by: nn0nnaddcl 9271 elnn0nn 9282 difgtsumgt 9386 nn0n0n1ge2 9387 uzaddcl 9651 fzctr 10199 nn0split 10202 zpnn0elfzo1 10275 ubmelm1fzo 10293 subfzo0 10309 modqmuladdnn0 10439 addmodidr 10444 modfzo0difsn 10466 nn0ennn 10504 expadd 10652 expmul 10655 bernneq 10731 bernneq2 10732 faclbnd 10812 faclbnd6 10815 bccmpl 10825 bcn0 10826 bcnn 10828 bcnp1n 10830 bcn2 10835 bcp1m1 10836 bcpasc 10837 bcn2p1 10841 hashfzo0 10894 hashfz0 10896 fisum0diag2 11590 hashiun 11621 binom1dif 11630 bcxmas 11632 geolim 11654 efaddlem 11817 efexp 11825 eftlub 11833 demoivreALT 11917 nn0ob 12049 modremain 12070 mulgcdr 12155 nn0seqcvgd 12179 modprmn0modprm0 12394 coprimeprodsq 12395 coprimeprodsq2 12396 pcexp 12447 dvdsprmpweqle 12475 difsqpwdvds 12476 znnen 12555 ennnfonelemp1 12563 mulgneg2 13226 cnfldmulg 14064 nn0subm 14071 |
Copyright terms: Public domain | W3C validator |