Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0cn | Unicode version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0cn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 9115 | . 2 | |
2 | 1 | sseli 3137 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cc 7747 cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 ax-rnegex 7858 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-int 3824 df-inn 8854 df-n0 9111 |
This theorem is referenced by: nn0nnaddcl 9141 elnn0nn 9152 difgtsumgt 9256 nn0n0n1ge2 9257 uzaddcl 9520 fzctr 10064 nn0split 10067 zpnn0elfzo1 10139 ubmelm1fzo 10157 subfzo0 10173 modqmuladdnn0 10299 addmodidr 10304 modfzo0difsn 10326 nn0ennn 10364 expadd 10493 expmul 10496 bernneq 10571 bernneq2 10572 faclbnd 10650 faclbnd6 10653 bccmpl 10663 bcn0 10664 bcnn 10666 bcnp1n 10668 bcn2 10673 bcp1m1 10674 bcpasc 10675 bcn2p1 10679 hashfzo0 10732 hashfz0 10734 fisum0diag2 11384 hashiun 11415 binom1dif 11424 bcxmas 11426 geolim 11448 efaddlem 11611 efexp 11619 eftlub 11627 demoivreALT 11710 nn0ob 11841 modremain 11862 mulgcdr 11947 nn0seqcvgd 11969 modprmn0modprm0 12184 coprimeprodsq 12185 coprimeprodsq2 12186 pcexp 12237 dvdsprmpweqle 12264 difsqpwdvds 12265 znnen 12327 ennnfonelemp1 12335 |
Copyright terms: Public domain | W3C validator |