| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cn | Unicode version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 9335 |
. 2
| |
| 2 | 1 | sseli 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-int 3900 df-inn 9072 df-n0 9331 |
| This theorem is referenced by: nn0nnaddcl 9361 elnn0nn 9372 difgtsumgt 9477 nn0n0n1ge2 9478 uzaddcl 9742 fzctr 10290 nn0split 10293 elfzoext 10358 zpnn0elfzo1 10374 ubmelm1fzo 10392 subfzo0 10408 modqmuladdnn0 10550 addmodidr 10555 modfzo0difsn 10577 nn0ennn 10615 expadd 10763 expmul 10766 bernneq 10842 bernneq2 10843 faclbnd 10923 faclbnd6 10926 bccmpl 10936 bcn0 10937 bcnn 10939 bcnp1n 10941 bcn2 10946 bcp1m1 10947 bcpasc 10948 bcn2p1 10952 hashfzo0 11005 hashfz0 11007 ccatws1lenp1bg 11127 swrdfv2 11154 swrdspsleq 11158 swrdlsw 11160 pfxmpt 11171 pfxswrd 11197 wrdind 11213 wrd2ind 11214 pfxccatin12lem4 11217 pfxccatin12lem1 11219 pfxccatin12lem2 11222 pfxccatin12 11224 swrdccat3blem 11230 fisum0diag2 11873 hashiun 11904 binom1dif 11913 bcxmas 11915 geolim 11937 efaddlem 12100 efexp 12108 eftlub 12116 demoivreALT 12200 nn0ob 12334 modremain 12355 mulgcdr 12454 nn0seqcvgd 12478 modprmn0modprm0 12694 coprimeprodsq 12695 coprimeprodsq2 12696 pcexp 12747 dvdsprmpweqle 12775 difsqpwdvds 12776 znnen 12884 ennnfonelemp1 12892 mulgneg2 13607 cnfldmulg 14453 nn0subm 14460 rpcxpmul2 15500 0sgmppw 15580 2lgslem1c 15682 2lgslem3a 15685 2lgslem3b 15686 2lgslem3c 15687 2lgslem3d 15688 2lgslem3a1 15689 2lgslem3b1 15690 2lgslem3c1 15691 2lgslem3d1 15692 |
| Copyright terms: Public domain | W3C validator |