Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0cn | Unicode version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0cn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 9133 | . 2 | |
2 | 1 | sseli 3143 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cc 7765 cn0 9128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4105 ax-cnex 7858 ax-resscn 7859 ax-1re 7861 ax-addrcl 7864 ax-rnegex 7876 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-int 3830 df-inn 8872 df-n0 9129 |
This theorem is referenced by: nn0nnaddcl 9159 elnn0nn 9170 difgtsumgt 9274 nn0n0n1ge2 9275 uzaddcl 9538 fzctr 10082 nn0split 10085 zpnn0elfzo1 10157 ubmelm1fzo 10175 subfzo0 10191 modqmuladdnn0 10317 addmodidr 10322 modfzo0difsn 10344 nn0ennn 10382 expadd 10511 expmul 10514 bernneq 10589 bernneq2 10590 faclbnd 10668 faclbnd6 10671 bccmpl 10681 bcn0 10682 bcnn 10684 bcnp1n 10686 bcn2 10691 bcp1m1 10692 bcpasc 10693 bcn2p1 10697 hashfzo0 10751 hashfz0 10753 fisum0diag2 11403 hashiun 11434 binom1dif 11443 bcxmas 11445 geolim 11467 efaddlem 11630 efexp 11638 eftlub 11646 demoivreALT 11729 nn0ob 11860 modremain 11881 mulgcdr 11966 nn0seqcvgd 11988 modprmn0modprm0 12203 coprimeprodsq 12204 coprimeprodsq2 12205 pcexp 12256 dvdsprmpweqle 12283 difsqpwdvds 12284 znnen 12346 ennnfonelemp1 12354 |
Copyright terms: Public domain | W3C validator |