![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0cn | Unicode version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0cn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 9198 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 3165 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 ax-sep 4135 ax-cnex 7919 ax-resscn 7920 ax-1re 7922 ax-addrcl 7925 ax-rnegex 7937 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ral 2472 df-rex 2473 df-v 2753 df-un 3147 df-in 3149 df-ss 3156 df-sn 3612 df-int 3859 df-inn 8937 df-n0 9194 |
This theorem is referenced by: nn0nnaddcl 9224 elnn0nn 9235 difgtsumgt 9339 nn0n0n1ge2 9340 uzaddcl 9603 fzctr 10150 nn0split 10153 zpnn0elfzo1 10225 ubmelm1fzo 10243 subfzo0 10259 modqmuladdnn0 10385 addmodidr 10390 modfzo0difsn 10412 nn0ennn 10450 expadd 10579 expmul 10582 bernneq 10658 bernneq2 10659 faclbnd 10738 faclbnd6 10741 bccmpl 10751 bcn0 10752 bcnn 10754 bcnp1n 10756 bcn2 10761 bcp1m1 10762 bcpasc 10763 bcn2p1 10767 hashfzo0 10820 hashfz0 10822 fisum0diag2 11472 hashiun 11503 binom1dif 11512 bcxmas 11514 geolim 11536 efaddlem 11699 efexp 11707 eftlub 11715 demoivreALT 11798 nn0ob 11930 modremain 11951 mulgcdr 12036 nn0seqcvgd 12058 modprmn0modprm0 12273 coprimeprodsq 12274 coprimeprodsq2 12275 pcexp 12326 dvdsprmpweqle 12353 difsqpwdvds 12354 znnen 12416 ennnfonelemp1 12424 mulgneg2 13061 cnfldmulg 13839 nn0subm 13846 |
Copyright terms: Public domain | W3C validator |