| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cn | Unicode version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 9374 |
. 2
| |
| 2 | 1 | sseli 3220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-rnegex 8108 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-int 3924 df-inn 9111 df-n0 9370 |
| This theorem is referenced by: nn0nnaddcl 9400 elnn0nn 9411 difgtsumgt 9516 nn0n0n1ge2 9517 uzaddcl 9781 fzctr 10329 nn0split 10332 elfzoext 10398 zpnn0elfzo1 10414 ubmelm1fzo 10432 subfzo0 10448 modqmuladdnn0 10590 addmodidr 10595 modfzo0difsn 10617 nn0ennn 10655 expadd 10803 expmul 10806 bernneq 10882 bernneq2 10883 faclbnd 10963 faclbnd6 10966 bccmpl 10976 bcn0 10977 bcnn 10979 bcnp1n 10981 bcn2 10986 bcp1m1 10987 bcpasc 10988 bcn2p1 10992 hashfzo0 11045 hashfz0 11047 ccatws1lenp1bg 11168 swrdfv2 11195 swrdspsleq 11199 swrdlsw 11201 pfxmpt 11212 pfxswrd 11238 wrdind 11254 wrd2ind 11255 pfxccatin12lem4 11258 pfxccatin12lem1 11260 pfxccatin12lem2 11263 pfxccatin12 11265 swrdccat3blem 11271 fisum0diag2 11958 hashiun 11989 binom1dif 11998 bcxmas 12000 geolim 12022 efaddlem 12185 efexp 12193 eftlub 12201 demoivreALT 12285 nn0ob 12419 modremain 12440 mulgcdr 12539 nn0seqcvgd 12563 modprmn0modprm0 12779 coprimeprodsq 12780 coprimeprodsq2 12781 pcexp 12832 dvdsprmpweqle 12860 difsqpwdvds 12861 znnen 12969 ennnfonelemp1 12977 mulgneg2 13693 cnfldmulg 14540 nn0subm 14547 rpcxpmul2 15587 0sgmppw 15667 2lgslem1c 15769 2lgslem3a 15772 2lgslem3b 15773 2lgslem3c 15774 2lgslem3d 15775 2lgslem3a1 15776 2lgslem3b1 15777 2lgslem3c1 15778 2lgslem3d1 15779 wlklenvclwlk 16084 |
| Copyright terms: Public domain | W3C validator |