| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cn | Unicode version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 9300 |
. 2
| |
| 2 | 1 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-rnegex 8034 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-int 3886 df-inn 9037 df-n0 9296 |
| This theorem is referenced by: nn0nnaddcl 9326 elnn0nn 9337 difgtsumgt 9442 nn0n0n1ge2 9443 uzaddcl 9707 fzctr 10255 nn0split 10258 elfzoext 10321 zpnn0elfzo1 10337 ubmelm1fzo 10355 subfzo0 10371 modqmuladdnn0 10513 addmodidr 10518 modfzo0difsn 10540 nn0ennn 10578 expadd 10726 expmul 10729 bernneq 10805 bernneq2 10806 faclbnd 10886 faclbnd6 10889 bccmpl 10899 bcn0 10900 bcnn 10902 bcnp1n 10904 bcn2 10909 bcp1m1 10910 bcpasc 10911 bcn2p1 10915 hashfzo0 10968 hashfz0 10970 ccatws1lenp1bg 11089 swrdfv2 11116 swrdspsleq 11120 swrdlsw 11122 fisum0diag2 11758 hashiun 11789 binom1dif 11798 bcxmas 11800 geolim 11822 efaddlem 11985 efexp 11993 eftlub 12001 demoivreALT 12085 nn0ob 12219 modremain 12240 mulgcdr 12339 nn0seqcvgd 12363 modprmn0modprm0 12579 coprimeprodsq 12580 coprimeprodsq2 12581 pcexp 12632 dvdsprmpweqle 12660 difsqpwdvds 12661 znnen 12769 ennnfonelemp1 12777 mulgneg2 13492 cnfldmulg 14338 nn0subm 14345 rpcxpmul2 15385 0sgmppw 15465 2lgslem1c 15567 2lgslem3a 15570 2lgslem3b 15571 2lgslem3c 15572 2lgslem3d 15573 2lgslem3a1 15574 2lgslem3b1 15575 2lgslem3c1 15576 2lgslem3d1 15577 |
| Copyright terms: Public domain | W3C validator |