| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cn | Unicode version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 9302 |
. 2
| |
| 2 | 1 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 ax-rnegex 8036 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-int 3886 df-inn 9039 df-n0 9298 |
| This theorem is referenced by: nn0nnaddcl 9328 elnn0nn 9339 difgtsumgt 9444 nn0n0n1ge2 9445 uzaddcl 9709 fzctr 10257 nn0split 10260 elfzoext 10323 zpnn0elfzo1 10339 ubmelm1fzo 10357 subfzo0 10373 modqmuladdnn0 10515 addmodidr 10520 modfzo0difsn 10542 nn0ennn 10580 expadd 10728 expmul 10731 bernneq 10807 bernneq2 10808 faclbnd 10888 faclbnd6 10891 bccmpl 10901 bcn0 10902 bcnn 10904 bcnp1n 10906 bcn2 10911 bcp1m1 10912 bcpasc 10913 bcn2p1 10917 hashfzo0 10970 hashfz0 10972 ccatws1lenp1bg 11092 swrdfv2 11119 swrdspsleq 11123 swrdlsw 11125 pfxmpt 11134 fisum0diag2 11791 hashiun 11822 binom1dif 11831 bcxmas 11833 geolim 11855 efaddlem 12018 efexp 12026 eftlub 12034 demoivreALT 12118 nn0ob 12252 modremain 12273 mulgcdr 12372 nn0seqcvgd 12396 modprmn0modprm0 12612 coprimeprodsq 12613 coprimeprodsq2 12614 pcexp 12665 dvdsprmpweqle 12693 difsqpwdvds 12694 znnen 12802 ennnfonelemp1 12810 mulgneg2 13525 cnfldmulg 14371 nn0subm 14378 rpcxpmul2 15418 0sgmppw 15498 2lgslem1c 15600 2lgslem3a 15603 2lgslem3b 15604 2lgslem3c 15605 2lgslem3d 15606 2lgslem3a1 15607 2lgslem3b1 15608 2lgslem3c1 15609 2lgslem3d1 15610 |
| Copyright terms: Public domain | W3C validator |