ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlemrprm Unicode version

Theorem eulerthlemrprm 12183
Description: Lemma for eulerth 12187. 
N and  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
) are relatively prime. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
Hypotheses
Ref Expression
eulerth.1  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
eulerth.2  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
eulerth.4  |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )
Assertion
Ref Expression
eulerthlemrprm  |-  ( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  =  1 )
Distinct variable groups:    x, F    y, F    x, N    y, N    ph, x
Allowed substitution hints:    ph( y)    A( x, y)    S( x, y)

Proof of Theorem eulerthlemrprm
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerth.1 . . . . . 6  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
21simp1d 1004 . . . . 5  |-  ( ph  ->  N  e.  NN )
32phicld 12172 . . . 4  |-  ( ph  ->  ( phi `  N
)  e.  NN )
4 elnnuz 9523 . . . 4  |-  ( ( phi `  N )  e.  NN  <->  ( phi `  N )  e.  (
ZZ>= `  1 ) )
53, 4sylib 121 . . 3  |-  ( ph  ->  ( phi `  N
)  e.  ( ZZ>= ` 
1 ) )
6 eluzfz2 9988 . . 3  |-  ( ( phi `  N )  e.  ( ZZ>= `  1
)  ->  ( phi `  N )  e.  ( 1 ... ( phi `  N ) ) )
75, 6syl 14 . 2  |-  ( ph  ->  ( phi `  N
)  e.  ( 1 ... ( phi `  N ) ) )
8 oveq2 5861 . . . . . . 7  |-  ( w  =  1  ->  (
1 ... w )  =  ( 1 ... 1
) )
98prodeq1d 11527 . . . . . 6  |-  ( w  =  1  ->  prod_ x  e.  ( 1 ... w ) ( F `
 x )  = 
prod_ x  e.  (
1 ... 1 ) ( F `  x ) )
109oveq2d 5869 . . . . 5  |-  ( w  =  1  ->  ( N  gcd  prod_ x  e.  ( 1 ... w ) ( F `  x
) )  =  ( N  gcd  prod_ x  e.  ( 1 ... 1
) ( F `  x ) ) )
1110eqeq1d 2179 . . . 4  |-  ( w  =  1  ->  (
( N  gcd  prod_ x  e.  ( 1 ... w ) ( F `
 x ) )  =  1  <->  ( N  gcd  prod_ x  e.  ( 1 ... 1 ) ( F `  x
) )  =  1 ) )
1211imbi2d 229 . . 3  |-  ( w  =  1  ->  (
( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... w ) ( F `  x
) )  =  1 )  <->  ( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... 1
) ( F `  x ) )  =  1 ) ) )
13 oveq2 5861 . . . . . . 7  |-  ( w  =  k  ->  (
1 ... w )  =  ( 1 ... k
) )
1413prodeq1d 11527 . . . . . 6  |-  ( w  =  k  ->  prod_ x  e.  ( 1 ... w ) ( F `
 x )  = 
prod_ x  e.  (
1 ... k ) ( F `  x ) )
1514oveq2d 5869 . . . . 5  |-  ( w  =  k  ->  ( N  gcd  prod_ x  e.  ( 1 ... w ) ( F `  x
) )  =  ( N  gcd  prod_ x  e.  ( 1 ... k
) ( F `  x ) ) )
1615eqeq1d 2179 . . . 4  |-  ( w  =  k  ->  (
( N  gcd  prod_ x  e.  ( 1 ... w ) ( F `
 x ) )  =  1  <->  ( N  gcd  prod_ x  e.  ( 1 ... k ) ( F `  x
) )  =  1 ) )
1716imbi2d 229 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... w ) ( F `  x
) )  =  1 )  <->  ( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... k
) ( F `  x ) )  =  1 ) ) )
18 oveq2 5861 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  (
1 ... w )  =  ( 1 ... (
k  +  1 ) ) )
1918prodeq1d 11527 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  prod_ x  e.  ( 1 ... w ) ( F `
 x )  = 
prod_ x  e.  (
1 ... ( k  +  1 ) ) ( F `  x ) )
2019oveq2d 5869 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( N  gcd  prod_ x  e.  ( 1 ... w ) ( F `  x
) )  =  ( N  gcd  prod_ x  e.  ( 1 ... (
k  +  1 ) ) ( F `  x ) ) )
2120eqeq1d 2179 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( N  gcd  prod_ x  e.  ( 1 ... w ) ( F `
 x ) )  =  1  <->  ( N  gcd  prod_ x  e.  ( 1 ... ( k  +  1 ) ) ( F `  x
) )  =  1 ) )
2221imbi2d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... w ) ( F `  x
) )  =  1 )  <->  ( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... (
k  +  1 ) ) ( F `  x ) )  =  1 ) ) )
23 oveq2 5861 . . . . . . 7  |-  ( w  =  ( phi `  N )  ->  (
1 ... w )  =  ( 1 ... ( phi `  N ) ) )
2423prodeq1d 11527 . . . . . 6  |-  ( w  =  ( phi `  N )  ->  prod_ x  e.  ( 1 ... w ) ( F `
 x )  = 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )
2524oveq2d 5869 . . . . 5  |-  ( w  =  ( phi `  N )  ->  ( N  gcd  prod_ x  e.  ( 1 ... w ) ( F `  x
) )  =  ( N  gcd  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
) ) )
2625eqeq1d 2179 . . . 4  |-  ( w  =  ( phi `  N )  ->  (
( N  gcd  prod_ x  e.  ( 1 ... w ) ( F `
 x ) )  =  1  <->  ( N  gcd  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x ) )  =  1 ) )
2726imbi2d 229 . . 3  |-  ( w  =  ( phi `  N )  ->  (
( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... w ) ( F `  x
) )  =  1 )  <->  ( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
) )  =  1 ) ) )
28 1z 9238 . . . . . . 7  |-  1  e.  ZZ
29 eulerth.2 . . . . . . . . . . 11  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
30 ssrab2 3232 . . . . . . . . . . 11  |-  { y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }  C_  (
0..^ N )
3129, 30eqsstri 3179 . . . . . . . . . 10  |-  S  C_  ( 0..^ N )
32 fzo0ssnn0 10171 . . . . . . . . . 10  |-  ( 0..^ N )  C_  NN0
3331, 32sstri 3156 . . . . . . . . 9  |-  S  C_  NN0
34 nn0sscn 9140 . . . . . . . . 9  |-  NN0  C_  CC
3533, 34sstri 3156 . . . . . . . 8  |-  S  C_  CC
36 eulerth.4 . . . . . . . . . 10  |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )
37 f1of 5442 . . . . . . . . . 10  |-  ( F : ( 1 ... ( phi `  N
) ) -1-1-onto-> S  ->  F :
( 1 ... ( phi `  N ) ) --> S )
3836, 37syl 14 . . . . . . . . 9  |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) --> S )
393nnge1d 8921 . . . . . . . . . 10  |-  ( ph  ->  1  <_  ( phi `  N ) )
40 uzid 9501 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  1  e.  ( ZZ>= `  1 )
)
4128, 40ax-mp 5 . . . . . . . . . . 11  |-  1  e.  ( ZZ>= `  1 )
423nnzd 9333 . . . . . . . . . . 11  |-  ( ph  ->  ( phi `  N
)  e.  ZZ )
43 elfz5 9973 . . . . . . . . . . 11  |-  ( ( 1  e.  ( ZZ>= ` 
1 )  /\  ( phi `  N )  e.  ZZ )  ->  (
1  e.  ( 1 ... ( phi `  N ) )  <->  1  <_  ( phi `  N ) ) )
4441, 42, 43sylancr 412 . . . . . . . . . 10  |-  ( ph  ->  ( 1  e.  ( 1 ... ( phi `  N ) )  <->  1  <_  ( phi `  N ) ) )
4539, 44mpbird 166 . . . . . . . . 9  |-  ( ph  ->  1  e.  ( 1 ... ( phi `  N ) ) )
4638, 45ffvelrnd 5632 . . . . . . . 8  |-  ( ph  ->  ( F `  1
)  e.  S )
4735, 46sselid 3145 . . . . . . 7  |-  ( ph  ->  ( F `  1
)  e.  CC )
48 fveq2 5496 . . . . . . . 8  |-  ( x  =  1  ->  ( F `  x )  =  ( F ` 
1 ) )
4948fprod1 11557 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  ( F `  1 )  e.  CC )  ->  prod_ x  e.  ( 1 ... 1 ) ( F `  x )  =  ( F ` 
1 ) )
5028, 47, 49sylancr 412 . . . . . 6  |-  ( ph  ->  prod_ x  e.  ( 1 ... 1 ) ( F `  x
)  =  ( F `
 1 ) )
5150oveq2d 5869 . . . . 5  |-  ( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... 1 ) ( F `
 x ) )  =  ( N  gcd  ( F `  1 ) ) )
522nnzd 9333 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
53 nn0ssz 9230 . . . . . . . 8  |-  NN0  C_  ZZ
5433, 53sstri 3156 . . . . . . 7  |-  S  C_  ZZ
5554, 46sselid 3145 . . . . . 6  |-  ( ph  ->  ( F `  1
)  e.  ZZ )
56 gcdcom 11928 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( F `  1 )  e.  ZZ )  -> 
( N  gcd  ( F `  1 )
)  =  ( ( F `  1 )  gcd  N ) )
5752, 55, 56syl2anc 409 . . . . 5  |-  ( ph  ->  ( N  gcd  ( F `  1 )
)  =  ( ( F `  1 )  gcd  N ) )
58 oveq1 5860 . . . . . . . . 9  |-  ( y  =  ( F ` 
1 )  ->  (
y  gcd  N )  =  ( ( F `
 1 )  gcd 
N ) )
5958eqeq1d 2179 . . . . . . . 8  |-  ( y  =  ( F ` 
1 )  ->  (
( y  gcd  N
)  =  1  <->  (
( F `  1
)  gcd  N )  =  1 ) )
6059, 29elrab2 2889 . . . . . . 7  |-  ( ( F `  1 )  e.  S  <->  ( ( F `  1 )  e.  ( 0..^ N )  /\  ( ( F `
 1 )  gcd 
N )  =  1 ) )
6146, 60sylib 121 . . . . . 6  |-  ( ph  ->  ( ( F ` 
1 )  e.  ( 0..^ N )  /\  ( ( F ` 
1 )  gcd  N
)  =  1 ) )
6261simprd 113 . . . . 5  |-  ( ph  ->  ( ( F ` 
1 )  gcd  N
)  =  1 )
6351, 57, 623eqtrd 2207 . . . 4  |-  ( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... 1 ) ( F `
 x ) )  =  1 )
6463a1i 9 . . 3  |-  ( ( phi `  N )  e.  ( ZZ>= `  1
)  ->  ( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... 1 ) ( F `
 x ) )  =  1 ) )
65 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  ( N  gcd  prod_
x  e.  ( 1 ... k ) ( F `  x ) )  =  1 )  ->  ( N  gcd  prod_
x  e.  ( 1 ... k ) ( F `  x ) )  =  1 )
6638adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  F : ( 1 ... ( phi `  N ) ) --> S )
67 fzofzp1 10183 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1..^ ( phi `  N ) )  ->  ( k  +  1 )  e.  ( 1 ... ( phi `  N ) ) )
6867adantl 275 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  ( k  +  1 )  e.  ( 1 ... ( phi `  N ) ) )
6966, 68ffvelrnd 5632 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  ( F `  ( k  +  1 ) )  e.  S
)
7054, 69sselid 3145 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  ( F `  ( k  +  1 ) )  e.  ZZ )
7152adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  N  e.  ZZ )
72 gcdcom 11928 . . . . . . . . . . 11  |-  ( ( ( F `  (
k  +  1 ) )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( F `  ( k  +  1 ) )  gcd  N
)  =  ( N  gcd  ( F `  ( k  +  1 ) ) ) )
7370, 71, 72syl2anc 409 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  ( ( F `
 ( k  +  1 ) )  gcd 
N )  =  ( N  gcd  ( F `
 ( k  +  1 ) ) ) )
74 oveq1 5860 . . . . . . . . . . . . . 14  |-  ( y  =  ( F `  ( k  +  1 ) )  ->  (
y  gcd  N )  =  ( ( F `
 ( k  +  1 ) )  gcd 
N ) )
7574eqeq1d 2179 . . . . . . . . . . . . 13  |-  ( y  =  ( F `  ( k  +  1 ) )  ->  (
( y  gcd  N
)  =  1  <->  (
( F `  (
k  +  1 ) )  gcd  N )  =  1 ) )
7675, 29elrab2 2889 . . . . . . . . . . . 12  |-  ( ( F `  ( k  +  1 ) )  e.  S  <->  ( ( F `  ( k  +  1 ) )  e.  ( 0..^ N )  /\  ( ( F `  ( k  +  1 ) )  gcd  N )  =  1 ) )
7776simprbi 273 . . . . . . . . . . 11  |-  ( ( F `  ( k  +  1 ) )  e.  S  ->  (
( F `  (
k  +  1 ) )  gcd  N )  =  1 )
7869, 77syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  ( ( F `
 ( k  +  1 ) )  gcd 
N )  =  1 )
7973, 78eqtr3d 2205 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  ( N  gcd  ( F `  ( k  +  1 ) ) )  =  1 )
8079adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  ( N  gcd  prod_
x  e.  ( 1 ... k ) ( F `  x ) )  =  1 )  ->  ( N  gcd  ( F `  ( k  +  1 ) ) )  =  1 )
8128a1i 9 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  1  e.  ZZ )
82 elfzoelz 10103 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1..^ ( phi `  N ) )  ->  k  e.  ZZ )
8382adantl 275 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  k  e.  ZZ )
8481, 83fzfigd 10387 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  ( 1 ... k )  e.  Fin )
8538ad2antrr 485 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... k ) )  ->  F :
( 1 ... ( phi `  N ) ) --> S )
86 elfznn 10010 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 1 ... k )  ->  x  e.  NN )
8786nnred 8891 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 ... k )  ->  x  e.  RR )
8887adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... k ) )  ->  x  e.  RR )
893nnred 8891 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( phi `  N
)  e.  RR )
9089ad2antrr 485 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... k ) )  ->  ( phi `  N )  e.  RR )
9182ad2antlr 486 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... k ) )  ->  k  e.  ZZ )
9291zred 9334 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... k ) )  ->  k  e.  RR )
93 elfzle2 9984 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 1 ... k )  ->  x  <_  k )
9493adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... k ) )  ->  x  <_  k )
95 elfzolt2 10112 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( 1..^ ( phi `  N ) )  ->  k  <  ( phi `  N ) )
9695ad2antlr 486 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... k ) )  ->  k  <  ( phi `  N ) )
9788, 92, 90, 94, 96lelttrd 8044 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... k ) )  ->  x  <  ( phi `  N ) )
9888, 90, 97ltled 8038 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... k ) )  ->  x  <_  ( phi `  N ) )
99 elfzuz 9977 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 ... k )  ->  x  e.  ( ZZ>= `  1 )
)
10042ad2antrr 485 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... k ) )  ->  ( phi `  N )  e.  ZZ )
101 elfz5 9973 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( ZZ>= ` 
1 )  /\  ( phi `  N )  e.  ZZ )  ->  (
x  e.  ( 1 ... ( phi `  N ) )  <->  x  <_  ( phi `  N ) ) )
10299, 100, 101syl2an2 589 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... k ) )  ->  ( x  e.  ( 1 ... ( phi `  N ) )  <-> 
x  <_  ( phi `  N ) ) )
10398, 102mpbird 166 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... k ) )  ->  x  e.  ( 1 ... ( phi `  N ) ) )
10485, 103ffvelrnd 5632 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... k ) )  ->  ( F `  x )  e.  S
)
10554, 104sselid 3145 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... k ) )  ->  ( F `  x )  e.  ZZ )
10684, 105fprodzcl 11572 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  prod_ x  e.  ( 1 ... k ) ( F `  x
)  e.  ZZ )
107 rpmul 12052 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  prod_ x  e.  ( 1 ... k ) ( F `  x )  e.  ZZ  /\  ( F `  ( k  +  1 ) )  e.  ZZ )  -> 
( ( ( N  gcd  prod_ x  e.  ( 1 ... k ) ( F `  x
) )  =  1  /\  ( N  gcd  ( F `  ( k  +  1 ) ) )  =  1 )  ->  ( N  gcd  ( prod_ x  e.  ( 1 ... k ) ( F `  x
)  x.  ( F `
 ( k  +  1 ) ) ) )  =  1 ) )
10871, 106, 70, 107syl3anc 1233 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  ( ( ( N  gcd  prod_ x  e.  ( 1 ... k
) ( F `  x ) )  =  1  /\  ( N  gcd  ( F `  ( k  +  1 ) ) )  =  1 )  ->  ( N  gcd  ( prod_ x  e.  ( 1 ... k
) ( F `  x )  x.  ( F `  ( k  +  1 ) ) ) )  =  1 ) )
109108adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  ( N  gcd  prod_
x  e.  ( 1 ... k ) ( F `  x ) )  =  1 )  ->  ( ( ( N  gcd  prod_ x  e.  ( 1 ... k
) ( F `  x ) )  =  1  /\  ( N  gcd  ( F `  ( k  +  1 ) ) )  =  1 )  ->  ( N  gcd  ( prod_ x  e.  ( 1 ... k
) ( F `  x )  x.  ( F `  ( k  +  1 ) ) ) )  =  1 ) )
11065, 80, 109mp2and 431 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  ( N  gcd  prod_
x  e.  ( 1 ... k ) ( F `  x ) )  =  1 )  ->  ( N  gcd  ( prod_ x  e.  ( 1 ... k ) ( F `  x
)  x.  ( F `
 ( k  +  1 ) ) ) )  =  1 )
111 elfzouz 10107 . . . . . . . . . . . 12  |-  ( k  e.  ( 1..^ ( phi `  N ) )  ->  k  e.  ( ZZ>= `  1 )
)
112111adantl 275 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  k  e.  (
ZZ>= `  1 ) )
11338ad2antrr 485 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... ( k  +  1 ) ) )  ->  F :
( 1 ... ( phi `  N ) ) --> S )
114 elfzelz 9981 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 1 ... ( k  +  1 ) )  ->  x  e.  ZZ )
115114zred 9334 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 ... ( k  +  1 ) )  ->  x  e.  RR )
116115adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... ( k  +  1 ) ) )  ->  x  e.  RR )
11782ad2antlr 486 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... ( k  +  1 ) ) )  ->  k  e.  ZZ )
118117peano2zd 9337 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  ZZ )
119118zred 9334 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  RR )
12089ad2antrr 485 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... ( k  +  1 ) ) )  ->  ( phi `  N )  e.  RR )
121 elfzle2 9984 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 ... ( k  +  1 ) )  ->  x  <_  ( k  +  1 ) )
122121adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... ( k  +  1 ) ) )  ->  x  <_  ( k  +  1 ) )
123 elfzle2 9984 . . . . . . . . . . . . . . . . 17  |-  ( ( k  +  1 )  e.  ( 1 ... ( phi `  N
) )  ->  (
k  +  1 )  <_  ( phi `  N ) )
12467, 123syl 14 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 1..^ ( phi `  N ) )  ->  ( k  +  1 )  <_ 
( phi `  N
) )
125124ad2antlr 486 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... ( k  +  1 ) ) )  ->  ( k  +  1 )  <_ 
( phi `  N
) )
126116, 119, 120, 122, 125letrd 8043 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... ( k  +  1 ) ) )  ->  x  <_  ( phi `  N ) )
127 elfzuz 9977 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 ... ( k  +  1 ) )  ->  x  e.  ( ZZ>= `  1 )
)
12842ad2antrr 485 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... ( k  +  1 ) ) )  ->  ( phi `  N )  e.  ZZ )
129127, 128, 101syl2an2 589 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... ( k  +  1 ) ) )  ->  ( x  e.  ( 1 ... ( phi `  N ) )  <-> 
x  <_  ( phi `  N ) ) )
130126, 129mpbird 166 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... ( k  +  1 ) ) )  ->  x  e.  ( 1 ... ( phi `  N ) ) )
131113, 130ffvelrnd 5632 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... ( k  +  1 ) ) )  ->  ( F `  x )  e.  S
)
13235, 131sselid 3145 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  x  e.  ( 1 ... ( k  +  1 ) ) )  ->  ( F `  x )  e.  CC )
133 fveq2 5496 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
134112, 132, 133fprodp1 11563 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  prod_ x  e.  ( 1 ... ( k  +  1 ) ) ( F `  x
)  =  ( prod_
x  e.  ( 1 ... k ) ( F `  x )  x.  ( F `  ( k  +  1 ) ) ) )
135134oveq2d 5869 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  ( N  gcd  prod_
x  e.  ( 1 ... ( k  +  1 ) ) ( F `  x ) )  =  ( N  gcd  ( prod_ x  e.  ( 1 ... k
) ( F `  x )  x.  ( F `  ( k  +  1 ) ) ) ) )
136135eqeq1d 2179 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  ( ( N  gcd  prod_ x  e.  ( 1 ... ( k  +  1 ) ) ( F `  x
) )  =  1  <-> 
( N  gcd  ( prod_ x  e.  ( 1 ... k ) ( F `  x )  x.  ( F `  ( k  +  1 ) ) ) )  =  1 ) )
137136adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  ( N  gcd  prod_
x  e.  ( 1 ... k ) ( F `  x ) )  =  1 )  ->  ( ( N  gcd  prod_ x  e.  ( 1 ... ( k  +  1 ) ) ( F `  x
) )  =  1  <-> 
( N  gcd  ( prod_ x  e.  ( 1 ... k ) ( F `  x )  x.  ( F `  ( k  +  1 ) ) ) )  =  1 ) )
138110, 137mpbird 166 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  /\  ( N  gcd  prod_
x  e.  ( 1 ... k ) ( F `  x ) )  =  1 )  ->  ( N  gcd  prod_
x  e.  ( 1 ... ( k  +  1 ) ) ( F `  x ) )  =  1 )
139138ex 114 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1..^ ( phi `  N ) ) )  ->  ( ( N  gcd  prod_ x  e.  ( 1 ... k ) ( F `  x
) )  =  1  ->  ( N  gcd  prod_
x  e.  ( 1 ... ( k  +  1 ) ) ( F `  x ) )  =  1 ) )
140139expcom 115 . . . 4  |-  ( k  e.  ( 1..^ ( phi `  N ) )  ->  ( ph  ->  ( ( N  gcd  prod_
x  e.  ( 1 ... k ) ( F `  x ) )  =  1  -> 
( N  gcd  prod_ x  e.  ( 1 ... ( k  +  1 ) ) ( F `
 x ) )  =  1 ) ) )
141140a2d 26 . . 3  |-  ( k  e.  ( 1..^ ( phi `  N ) )  ->  ( ( ph  ->  ( N  gcd  prod_
x  e.  ( 1 ... k ) ( F `  x ) )  =  1 )  ->  ( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... (
k  +  1 ) ) ( F `  x ) )  =  1 ) ) )
14212, 17, 22, 27, 64, 141fzind2 10195 . 2  |-  ( ( phi `  N )  e.  ( 1 ... ( phi `  N
) )  ->  ( ph  ->  ( N  gcd  prod_
x  e.  ( 1 ... ( phi `  N ) ) ( F `  x ) )  =  1 ) )
1437, 142mpcom 36 1  |-  ( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   {crab 2452   class class class wbr 3989   -->wf 5194   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955   NNcn 8878   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965  ..^cfzo 10098   prod_cprod 11513    gcd cgcd 11897   phicphi 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-phi 12165
This theorem is referenced by:  eulerthlemth  12186
  Copyright terms: Public domain W3C validator