ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0sscn GIF version

Theorem nn0sscn 9245
Description: Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nn0sscn 0 ⊆ ℂ

Proof of Theorem nn0sscn
StepHypRef Expression
1 nn0ssre 9244 . 2 0 ⊆ ℝ
2 ax-resscn 7964 . 2 ℝ ⊆ ℂ
31, 2sstri 3188 1 0 ⊆ ℂ
Colors of variables: wff set class
Syntax hints:  wss 3153  cc 7870  cr 7871  0cn0 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-rnegex 7981
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-int 3871  df-inn 8983  df-n0 9241
This theorem is referenced by:  nn0cn  9250  nn0expcl  10624  fsumnn0cl  11546  fprodnn0cl  11755  eulerthlemrprm  12367  eulerthlema  12368
  Copyright terms: Public domain W3C validator