![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0sscn | GIF version |
Description: Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0sscn | ⊢ ℕ0 ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 9244 | . 2 ⊢ ℕ0 ⊆ ℝ | |
2 | ax-resscn 7964 | . 2 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 3188 | 1 ⊢ ℕ0 ⊆ ℂ |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3153 ℂcc 7870 ℝcr 7871 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-int 3871 df-inn 8983 df-n0 9241 |
This theorem is referenced by: nn0cn 9250 nn0expcl 10624 fsumnn0cl 11546 fprodnn0cl 11755 eulerthlemrprm 12367 eulerthlema 12368 |
Copyright terms: Public domain | W3C validator |