ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0sscn GIF version

Theorem nn0sscn 9181
Description: Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nn0sscn 0 ⊆ ℂ

Proof of Theorem nn0sscn
StepHypRef Expression
1 nn0ssre 9180 . 2 0 ⊆ ℝ
2 ax-resscn 7903 . 2 ℝ ⊆ ℂ
31, 2sstri 3165 1 0 ⊆ ℂ
Colors of variables: wff set class
Syntax hints:  wss 3130  cc 7809  cr 7810  0cn0 9176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4122  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908  ax-rnegex 7920
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-int 3846  df-inn 8920  df-n0 9177
This theorem is referenced by:  nn0cn  9186  nn0expcl  10534  fsumnn0cl  11411  fprodnn0cl  11620  eulerthlemrprm  12229  eulerthlema  12230
  Copyright terms: Public domain W3C validator