| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0sscn | GIF version | ||
| Description: Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0sscn | ⊢ ℕ0 ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre 9281 | . 2 ⊢ ℕ0 ⊆ ℝ | |
| 2 | ax-resscn 7999 | . 2 ⊢ ℝ ⊆ ℂ | |
| 3 | 1, 2 | sstri 3201 | 1 ⊢ ℕ0 ⊆ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3165 ℂcc 7905 ℝcr 7906 ℕ0cn0 9277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 ax-rnegex 8016 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-int 3885 df-inn 9019 df-n0 9278 |
| This theorem is referenced by: nn0cn 9287 nn0expcl 10679 fsumnn0cl 11633 fprodnn0cl 11842 eulerthlemrprm 12470 eulerthlema 12471 |
| Copyright terms: Public domain | W3C validator |