| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0sscn | GIF version | ||
| Description: Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0sscn | ⊢ ℕ0 ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre 9319 | . 2 ⊢ ℕ0 ⊆ ℝ | |
| 2 | ax-resscn 8037 | . 2 ⊢ ℝ ⊆ ℂ | |
| 3 | 1, 2 | sstri 3206 | 1 ⊢ ℕ0 ⊆ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3170 ℂcc 7943 ℝcr 7944 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 ax-rnegex 8054 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-int 3892 df-inn 9057 df-n0 9316 |
| This theorem is referenced by: nn0cn 9325 nn0expcl 10720 fsumnn0cl 11789 fprodnn0cl 11998 eulerthlemrprm 12626 eulerthlema 12627 |
| Copyright terms: Public domain | W3C validator |