| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ex | Unicode version | ||
| Description: The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.) |
| Ref | Expression |
|---|---|
| nn0ex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9298 |
. 2
| |
| 2 | nnex 9044 |
. . 3
| |
| 3 | c0ex 8068 |
. . . 4
| |
| 4 | 3 | snex 4230 |
. . 3
|
| 5 | 2, 4 | unex 4489 |
. 2
|
| 6 | 1, 5 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-i2m1 8032 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-inn 9039 df-n0 9298 |
| This theorem is referenced by: nn0ennn 10580 nnenom 10581 uzennn 10583 xnn0nnen 10584 wrdexg 11007 expcnvap0 11846 expcnvre 11847 expcnv 11848 geolim 11855 mertenslem2 11880 eftlub 12034 bitsfval 12286 bitsf 12290 1arith 12723 znnen 12802 psrval 14461 fnpsr 14462 psrbag 14464 psrbasg 14469 psrelbas 14470 psrplusgg 14473 psraddcl 14475 psr0cl 14476 psr0lid 14477 psrnegcl 14478 psrlinv 14479 psrgrp 14480 psr1clfi 14483 mplsubgfilemm 14493 mplsubgfilemcl 14494 plyval 15237 elply2 15240 plyf 15242 elplyr 15245 plyaddlem1 15252 plyaddlem 15254 plymullem 15255 plyco 15264 plycj 15266 plyrecj 15268 |
| Copyright terms: Public domain | W3C validator |