![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0ex | Unicode version |
Description: The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.) |
Ref | Expression |
---|---|
nn0ex |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9241 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nnex 8988 |
. . 3
![]() ![]() ![]() ![]() | |
3 | c0ex 8013 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 3 | snex 4214 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | unex 4472 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | eqeltri 2266 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-i2m1 7977 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-inn 8983 df-n0 9241 |
This theorem is referenced by: nn0ennn 10504 nnenom 10505 uzennn 10507 xnn0nnen 10508 wrdexg 10925 expcnvap0 11645 expcnvre 11646 expcnv 11647 geolim 11654 mertenslem2 11679 eftlub 11833 1arith 12505 znnen 12555 psrval 14152 fnpsr 14153 psrbag 14155 psrbasg 14159 psrelbas 14160 psrplusgg 14162 psraddcl 14164 plyval 14878 elply2 14881 plyf 14883 elplyr 14886 plyaddlem1 14893 plyaddlem 14895 plymullem 14896 |
Copyright terms: Public domain | W3C validator |