![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0ex | Unicode version |
Description: The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.) |
Ref | Expression |
---|---|
nn0ex |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9244 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nnex 8990 |
. . 3
![]() ![]() ![]() ![]() | |
3 | c0ex 8015 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 3 | snex 4215 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | unex 4473 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | eqeltri 2266 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-i2m1 7979 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-inn 8985 df-n0 9244 |
This theorem is referenced by: nn0ennn 10507 nnenom 10508 uzennn 10510 xnn0nnen 10511 wrdexg 10928 expcnvap0 11648 expcnvre 11649 expcnv 11650 geolim 11657 mertenslem2 11682 eftlub 11836 1arith 12508 znnen 12558 psrval 14163 fnpsr 14164 psrbag 14166 psrbasg 14170 psrelbas 14171 psrplusgg 14173 psraddcl 14175 plyval 14911 elply2 14914 plyf 14916 elplyr 14919 plyaddlem1 14926 plyaddlem 14928 plymullem 14929 plyco 14937 plycj 14939 plyrecj 14941 |
Copyright terms: Public domain | W3C validator |