![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0ex | Unicode version |
Description: The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.) |
Ref | Expression |
---|---|
nn0ex |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9206 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nnex 8954 |
. . 3
![]() ![]() ![]() ![]() | |
3 | c0ex 7980 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 3 | snex 4203 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | unex 4459 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | eqeltri 2262 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-cnex 7931 ax-resscn 7932 ax-1cn 7933 ax-1re 7934 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-i2m1 7945 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-uni 3825 df-int 3860 df-inn 8949 df-n0 9206 |
This theorem is referenced by: nn0ennn 10463 nnenom 10464 uzennn 10466 expcnvap0 11541 expcnvre 11542 expcnv 11543 geolim 11550 mertenslem2 11575 eftlub 11729 1arith 12398 znnen 12448 psrval 13941 psrex 13942 psrbag 13944 psrbasg 13948 |
Copyright terms: Public domain | W3C validator |