ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notrab GIF version

Theorem notrab 3449
Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
notrab (𝐴 ∖ {𝑥𝐴𝜑}) = {𝑥𝐴 ∣ ¬ 𝜑}
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem notrab
StepHypRef Expression
1 difab 3441 . 2 ({𝑥𝑥𝐴} ∖ {𝑥𝜑}) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝜑)}
2 difin 3409 . . 3 (𝐴 ∖ (𝐴 ∩ {𝑥𝜑})) = (𝐴 ∖ {𝑥𝜑})
3 dfrab3 3448 . . . 4 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
43difeq2i 3287 . . 3 (𝐴 ∖ {𝑥𝐴𝜑}) = (𝐴 ∖ (𝐴 ∩ {𝑥𝜑}))
5 abid2 2325 . . . 4 {𝑥𝑥𝐴} = 𝐴
65difeq1i 3286 . . 3 ({𝑥𝑥𝐴} ∖ {𝑥𝜑}) = (𝐴 ∖ {𝑥𝜑})
72, 4, 63eqtr4i 2235 . 2 (𝐴 ∖ {𝑥𝐴𝜑}) = ({𝑥𝑥𝐴} ∖ {𝑥𝜑})
8 df-rab 2492 . 2 {𝑥𝐴 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝜑)}
91, 7, 83eqtr4i 2235 1 (𝐴 ∖ {𝑥𝐴𝜑}) = {𝑥𝐴 ∣ ¬ 𝜑}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1372  wcel 2175  {cab 2190  {crab 2487  cdif 3162  cin 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rab 2492  df-v 2773  df-dif 3167  df-in 3171
This theorem is referenced by:  diffitest  6983
  Copyright terms: Public domain W3C validator