| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notrab | GIF version | ||
| Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| notrab | ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difab 3441 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∖ {𝑥 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)} | |
| 2 | difin 3409 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ {𝑥 ∣ 𝜑})) = (𝐴 ∖ {𝑥 ∣ 𝜑}) | |
| 3 | dfrab3 3448 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
| 4 | 3 | difeq2i 3287 | . . 3 ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = (𝐴 ∖ (𝐴 ∩ {𝑥 ∣ 𝜑})) |
| 5 | abid2 2325 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 6 | 5 | difeq1i 3286 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∖ {𝑥 ∣ 𝜑}) = (𝐴 ∖ {𝑥 ∣ 𝜑}) |
| 7 | 2, 4, 6 | 3eqtr4i 2235 | . 2 ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = ({𝑥 ∣ 𝑥 ∈ 𝐴} ∖ {𝑥 ∣ 𝜑}) |
| 8 | df-rab 2492 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)} | |
| 9 | 1, 7, 8 | 3eqtr4i 2235 | 1 ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1372 ∈ wcel 2175 {cab 2190 {crab 2487 ∖ cdif 3162 ∩ cin 3164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rab 2492 df-v 2773 df-dif 3167 df-in 3171 |
| This theorem is referenced by: diffitest 6983 |
| Copyright terms: Public domain | W3C validator |