| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > onirri | GIF version | ||
| Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) | 
| Ref | Expression | 
|---|---|
| onirri.1 | ⊢ 𝐴 ∈ On | 
| Ref | Expression | 
|---|---|
| onirri | ⊢ ¬ 𝐴 ∈ 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onirri.1 | . . 3 ⊢ 𝐴 ∈ On | |
| 2 | 1 | onordi 4461 | . 2 ⊢ Ord 𝐴 | 
| 3 | ordirr 4578 | . 2 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ¬ 𝐴 ∈ 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 ∈ wcel 2167 Ord word 4397 Oncon0 4398 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-sn 3628 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 | 
| This theorem is referenced by: ontri2orexmidim 4608 enpr2d 6876 pm54.43 7257 pw1ne1 7296 | 
| Copyright terms: Public domain | W3C validator |