| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onirri | GIF version | ||
| Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| onirri.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| onirri | ⊢ ¬ 𝐴 ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onirri.1 | . . 3 ⊢ 𝐴 ∈ On | |
| 2 | 1 | onordi 4478 | . 2 ⊢ Ord 𝐴 |
| 3 | ordirr 4595 | . 2 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ¬ 𝐴 ∈ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2177 Ord word 4414 Oncon0 4415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3170 df-in 3174 df-ss 3181 df-sn 3641 df-uni 3854 df-tr 4148 df-iord 4418 df-on 4420 |
| This theorem is referenced by: ontri2orexmidim 4625 enpr2d 6922 pm54.43 7310 pw1ne1 7354 |
| Copyright terms: Public domain | W3C validator |