ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onirri GIF version

Theorem onirri 4579
Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
onirri.1 𝐴 ∈ On
Assertion
Ref Expression
onirri ¬ 𝐴𝐴

Proof of Theorem onirri
StepHypRef Expression
1 onirri.1 . . 3 𝐴 ∈ On
21onordi 4461 . 2 Ord 𝐴
3 ordirr 4578 . 2 (Ord 𝐴 → ¬ 𝐴𝐴)
42, 3ax-mp 5 1 ¬ 𝐴𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2167  Ord word 4397  Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-sn 3628  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403
This theorem is referenced by:  ontri2orexmidim  4608  enpr2d  6876  pm54.43  7257  pw1ne1  7296
  Copyright terms: Public domain W3C validator