| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ontri2orexmidim | Unicode version | ||
| Description: Ordinal trichotomy implies excluded middle. Closed form of ordtri2or2exmid 4607. (Contributed by Jim Kingdon, 26-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| ontri2orexmidim | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordtri2or2exmidlem 4562 | 
. . . . 5
 | |
| 2 | suc0 4446 | 
. . . . . 6
 | |
| 3 | 0elon 4427 | 
. . . . . . 7
 | |
| 4 | 3 | onsuci 4552 | 
. . . . . 6
 | 
| 5 | 2, 4 | eqeltrri 2270 | 
. . . . 5
 | 
| 6 | sseq1 3206 | 
. . . . . . 7
 | |
| 7 | sseq2 3207 | 
. . . . . . 7
 | |
| 8 | 6, 7 | orbi12d 794 | 
. . . . . 6
 | 
| 9 | sseq2 3207 | 
. . . . . . 7
 | |
| 10 | sseq1 3206 | 
. . . . . . 7
 | |
| 11 | 9, 10 | orbi12d 794 | 
. . . . . 6
 | 
| 12 | 8, 11 | rspc2va 2882 | 
. . . . 5
 | 
| 13 | 1, 5, 12 | mpanl12 436 | 
. . . 4
 | 
| 14 | 5 | onirri 4579 | 
. . . . . 6
 | 
| 15 | simpl 109 | 
. . . . . . . 8
 | |
| 16 | simpr 110 | 
. . . . . . . . 9
 | |
| 17 | p0ex 4221 | 
. . . . . . . . . . 11
 | |
| 18 | 17 | prid2 3729 | 
. . . . . . . . . 10
 | 
| 19 | biidd 172 | 
. . . . . . . . . . 11
 | |
| 20 | 19 | elrab3 2921 | 
. . . . . . . . . 10
 | 
| 21 | 18, 20 | ax-mp 5 | 
. . . . . . . . 9
 | 
| 22 | 16, 21 | sylibr 134 | 
. . . . . . . 8
 | 
| 23 | 15, 22 | sseldd 3184 | 
. . . . . . 7
 | 
| 24 | 23 | ex 115 | 
. . . . . 6
 | 
| 25 | 14, 24 | mtoi 665 | 
. . . . 5
 | 
| 26 | snssg 3756 | 
. . . . . . 7
 | |
| 27 | 3, 26 | ax-mp 5 | 
. . . . . 6
 | 
| 28 | 0ex 4160 | 
. . . . . . . 8
 | |
| 29 | 28 | prid1 3728 | 
. . . . . . 7
 | 
| 30 | biidd 172 | 
. . . . . . . 8
 | |
| 31 | 30 | elrab3 2921 | 
. . . . . . 7
 | 
| 32 | 29, 31 | ax-mp 5 | 
. . . . . 6
 | 
| 33 | 27, 32 | sylbb1 137 | 
. . . . 5
 | 
| 34 | 25, 33 | orim12i 760 | 
. . . 4
 | 
| 35 | 13, 34 | syl 14 | 
. . 3
 | 
| 36 | 35 | orcomd 730 | 
. 2
 | 
| 37 | df-dc 836 | 
. 2
 | |
| 38 | 36, 37 | sylibr 134 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 | 
| This theorem is referenced by: exmidontri2or 7310 | 
| Copyright terms: Public domain | W3C validator |