| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ontri2orexmidim | Unicode version | ||
| Description: Ordinal trichotomy implies excluded middle. Closed form of ordtri2or2exmid 4663. (Contributed by Jim Kingdon, 26-Aug-2024.) |
| Ref | Expression |
|---|---|
| ontri2orexmidim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtri2or2exmidlem 4618 |
. . . . 5
| |
| 2 | suc0 4502 |
. . . . . 6
| |
| 3 | 0elon 4483 |
. . . . . . 7
| |
| 4 | 3 | onsuci 4608 |
. . . . . 6
|
| 5 | 2, 4 | eqeltrri 2303 |
. . . . 5
|
| 6 | sseq1 3247 |
. . . . . . 7
| |
| 7 | sseq2 3248 |
. . . . . . 7
| |
| 8 | 6, 7 | orbi12d 798 |
. . . . . 6
|
| 9 | sseq2 3248 |
. . . . . . 7
| |
| 10 | sseq1 3247 |
. . . . . . 7
| |
| 11 | 9, 10 | orbi12d 798 |
. . . . . 6
|
| 12 | 8, 11 | rspc2va 2921 |
. . . . 5
|
| 13 | 1, 5, 12 | mpanl12 436 |
. . . 4
|
| 14 | 5 | onirri 4635 |
. . . . . 6
|
| 15 | simpl 109 |
. . . . . . . 8
| |
| 16 | simpr 110 |
. . . . . . . . 9
| |
| 17 | p0ex 4272 |
. . . . . . . . . . 11
| |
| 18 | 17 | prid2 3773 |
. . . . . . . . . 10
|
| 19 | biidd 172 |
. . . . . . . . . . 11
| |
| 20 | 19 | elrab3 2960 |
. . . . . . . . . 10
|
| 21 | 18, 20 | ax-mp 5 |
. . . . . . . . 9
|
| 22 | 16, 21 | sylibr 134 |
. . . . . . . 8
|
| 23 | 15, 22 | sseldd 3225 |
. . . . . . 7
|
| 24 | 23 | ex 115 |
. . . . . 6
|
| 25 | 14, 24 | mtoi 668 |
. . . . 5
|
| 26 | snssg 3802 |
. . . . . . 7
| |
| 27 | 3, 26 | ax-mp 5 |
. . . . . 6
|
| 28 | 0ex 4211 |
. . . . . . . 8
| |
| 29 | 28 | prid1 3772 |
. . . . . . 7
|
| 30 | biidd 172 |
. . . . . . . 8
| |
| 31 | 30 | elrab3 2960 |
. . . . . . 7
|
| 32 | 29, 31 | ax-mp 5 |
. . . . . 6
|
| 33 | 27, 32 | sylbb1 137 |
. . . . 5
|
| 34 | 25, 33 | orim12i 764 |
. . . 4
|
| 35 | 13, 34 | syl 14 |
. . 3
|
| 36 | 35 | orcomd 734 |
. 2
|
| 37 | df-dc 840 |
. 2
| |
| 38 | 36, 37 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 |
| This theorem is referenced by: exmidontri2or 7428 |
| Copyright terms: Public domain | W3C validator |