ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontr1 Unicode version

Theorem ontr1 4391
Description: Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
ontr1  |-  ( C  e.  On  ->  (
( A  e.  B  /\  B  e.  C
)  ->  A  e.  C ) )

Proof of Theorem ontr1
StepHypRef Expression
1 eloni 4377 . 2  |-  ( C  e.  On  ->  Ord  C )
2 ordtr1 4390 . 2  |-  ( Ord 
C  ->  ( ( A  e.  B  /\  B  e.  C )  ->  A  e.  C ) )
31, 2syl 14 1  |-  ( C  e.  On  ->  (
( A  e.  B  /\  B  e.  C
)  ->  A  e.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   Ord word 4364   Oncon0 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812  df-tr 4104  df-iord 4368  df-on 4370
This theorem is referenced by:  smoiun  6304  nntr2  6506  onunsnss  6918  snon0  6937  exmidontriimlem2  7223  ltsopi  7321  prarloclemarch2  7420  pwle2  14833
  Copyright terms: Public domain W3C validator