| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onunsnss | Unicode version | ||
| Description: Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.) |
| Ref | Expression |
|---|---|
| onunsnss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 4596 |
. . . . 5
| |
| 2 | elsni 3655 |
. . . . . . . 8
| |
| 3 | 2 | adantl 277 |
. . . . . . 7
|
| 4 | simplr 528 |
. . . . . . 7
| |
| 5 | 3, 4 | eqeltrrd 2284 |
. . . . . 6
|
| 6 | 5 | ex 115 |
. . . . 5
|
| 7 | 1, 6 | mtoi 666 |
. . . 4
|
| 8 | snidg 3666 |
. . . . . . . . 9
| |
| 9 | elun2 3345 |
. . . . . . . . 9
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . 8
|
| 11 | 10 | adantr 276 |
. . . . . . 7
|
| 12 | ontr1 4443 |
. . . . . . . 8
| |
| 13 | 12 | adantl 277 |
. . . . . . 7
|
| 14 | 11, 13 | mpan2d 428 |
. . . . . 6
|
| 15 | 14 | imp 124 |
. . . . 5
|
| 16 | elun 3318 |
. . . . 5
| |
| 17 | 15, 16 | sylib 122 |
. . . 4
|
| 18 | 7, 17 | ecased 1362 |
. . 3
|
| 19 | 18 | ex 115 |
. 2
|
| 20 | 19 | ssrdv 3203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-setind 4592 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-sn 3643 df-uni 3856 df-tr 4150 df-iord 4420 df-on 4422 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |