Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onunsnss | Unicode version |
Description: Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.) |
Ref | Expression |
---|---|
onunsnss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4518 | . . . . 5 | |
2 | elsni 3594 | . . . . . . . 8 | |
3 | 2 | adantl 275 | . . . . . . 7 |
4 | simplr 520 | . . . . . . 7 | |
5 | 3, 4 | eqeltrrd 2244 | . . . . . 6 |
6 | 5 | ex 114 | . . . . 5 |
7 | 1, 6 | mtoi 654 | . . . 4 |
8 | snidg 3605 | . . . . . . . . 9 | |
9 | elun2 3290 | . . . . . . . . 9 | |
10 | 8, 9 | syl 14 | . . . . . . . 8 |
11 | 10 | adantr 274 | . . . . . . 7 |
12 | ontr1 4367 | . . . . . . . 8 | |
13 | 12 | adantl 275 | . . . . . . 7 |
14 | 11, 13 | mpan2d 425 | . . . . . 6 |
15 | 14 | imp 123 | . . . . 5 |
16 | elun 3263 | . . . . 5 | |
17 | 15, 16 | sylib 121 | . . . 4 |
18 | 7, 17 | ecased 1339 | . . 3 |
19 | 18 | ex 114 | . 2 |
20 | 19 | ssrdv 3148 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1343 wcel 2136 cun 3114 wss 3116 csn 3576 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |