| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > onunsnss | Unicode version | ||
| Description: Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| onunsnss | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elirr 4577 | 
. . . . 5
 | |
| 2 | elsni 3640 | 
. . . . . . . 8
 | |
| 3 | 2 | adantl 277 | 
. . . . . . 7
 | 
| 4 | simplr 528 | 
. . . . . . 7
 | |
| 5 | 3, 4 | eqeltrrd 2274 | 
. . . . . 6
 | 
| 6 | 5 | ex 115 | 
. . . . 5
 | 
| 7 | 1, 6 | mtoi 665 | 
. . . 4
 | 
| 8 | snidg 3651 | 
. . . . . . . . 9
 | |
| 9 | elun2 3331 | 
. . . . . . . . 9
 | |
| 10 | 8, 9 | syl 14 | 
. . . . . . . 8
 | 
| 11 | 10 | adantr 276 | 
. . . . . . 7
 | 
| 12 | ontr1 4424 | 
. . . . . . . 8
 | |
| 13 | 12 | adantl 277 | 
. . . . . . 7
 | 
| 14 | 11, 13 | mpan2d 428 | 
. . . . . 6
 | 
| 15 | 14 | imp 124 | 
. . . . 5
 | 
| 16 | elun 3304 | 
. . . . 5
 | |
| 17 | 15, 16 | sylib 122 | 
. . . 4
 | 
| 18 | 7, 17 | ecased 1360 | 
. . 3
 | 
| 19 | 18 | ex 115 | 
. 2
 | 
| 20 | 19 | ssrdv 3189 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |