ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onunsnss Unicode version

Theorem onunsnss 6978
Description: Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.)
Assertion
Ref Expression
onunsnss  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  B  C_  A
)

Proof of Theorem onunsnss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elirr 4577 . . . . 5  |-  -.  B  e.  B
2 elsni 3640 . . . . . . . 8  |-  ( x  e.  { B }  ->  x  =  B )
32adantl 277 . . . . . . 7  |-  ( ( ( ( B  e.  V  /\  ( A  u.  { B }
)  e.  On )  /\  x  e.  B
)  /\  x  e.  { B } )  ->  x  =  B )
4 simplr 528 . . . . . . 7  |-  ( ( ( ( B  e.  V  /\  ( A  u.  { B }
)  e.  On )  /\  x  e.  B
)  /\  x  e.  { B } )  ->  x  e.  B )
53, 4eqeltrrd 2274 . . . . . 6  |-  ( ( ( ( B  e.  V  /\  ( A  u.  { B }
)  e.  On )  /\  x  e.  B
)  /\  x  e.  { B } )  ->  B  e.  B )
65ex 115 . . . . 5  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  ( x  e.  { B }  ->  B  e.  B ) )
71, 6mtoi 665 . . . 4  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  -.  x  e.  { B } )
8 snidg 3651 . . . . . . . . 9  |-  ( B  e.  V  ->  B  e.  { B } )
9 elun2 3331 . . . . . . . . 9  |-  ( B  e.  { B }  ->  B  e.  ( A  u.  { B }
) )
108, 9syl 14 . . . . . . . 8  |-  ( B  e.  V  ->  B  e.  ( A  u.  { B } ) )
1110adantr 276 . . . . . . 7  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  B  e.  ( A  u.  { B } ) )
12 ontr1 4424 . . . . . . . 8  |-  ( ( A  u.  { B } )  e.  On  ->  ( ( x  e.  B  /\  B  e.  ( A  u.  { B } ) )  ->  x  e.  ( A  u.  { B } ) ) )
1312adantl 277 . . . . . . 7  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  ( ( x  e.  B  /\  B  e.  ( A  u.  { B } ) )  ->  x  e.  ( A  u.  { B } ) ) )
1411, 13mpan2d 428 . . . . . 6  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  ( x  e.  B  ->  x  e.  ( A  u.  { B } ) ) )
1514imp 124 . . . . 5  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  x  e.  ( A  u.  { B } ) )
16 elun 3304 . . . . 5  |-  ( x  e.  ( A  u.  { B } )  <->  ( x  e.  A  \/  x  e.  { B } ) )
1715, 16sylib 122 . . . 4  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  ( x  e.  A  \/  x  e.  { B } ) )
187, 17ecased 1360 . . 3  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  x  e.  A )
1918ex 115 . 2  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  ( x  e.  B  ->  x  e.  A ) )
2019ssrdv 3189 1  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  B  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167    u. cun 3155    C_ wss 3157   {csn 3622   Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator