Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidontriimlem2 | Unicode version |
Description: Lemma for exmidontriim 7161. (Contributed by Jim Kingdon, 12-Aug-2024.) |
Ref | Expression |
---|---|
exmidontriimlem2.b | |
exmidontriimlem2.em | EXMID |
exmidontriimlem2.hb |
Ref | Expression |
---|---|
exmidontriimlem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidontriimlem2.b | . . . . . 6 | |
2 | 1 | ad2antrr 480 | . . . . 5 |
3 | simpr 109 | . . . . . 6 | |
4 | simplr 520 | . . . . . 6 | |
5 | 3, 4 | jca 304 | . . . . 5 |
6 | ontr1 4350 | . . . . 5 | |
7 | 2, 5, 6 | sylc 62 | . . . 4 |
8 | 7 | r19.29an 2599 | . . 3 |
9 | 8 | orcd 723 | . 2 |
10 | simpr 109 | . . . . 5 | |
11 | simplr 520 | . . . . 5 | |
12 | 10, 11 | eqeltrd 2234 | . . . 4 |
13 | 12 | r19.29an 2599 | . . 3 |
14 | 13 | orcd 723 | . 2 |
15 | simpr 109 | . . 3 | |
16 | 15 | olcd 724 | . 2 |
17 | exmidontriimlem2.hb | . . 3 | |
18 | exmidontriimlem2.em | . . 3 EXMID | |
19 | exmidontriimlem1 7157 | . . 3 EXMID | |
20 | 17, 18, 19 | syl2anc 409 | . 2 |
21 | 9, 14, 16, 20 | mpjao3dan 1289 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 w3o 962 wceq 1335 wcel 2128 wral 2435 wrex 2436 EXMIDwem 4156 con0 4324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-nul 4091 ax-pow 4136 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-uni 3774 df-tr 4064 df-exmid 4157 df-iord 4327 df-on 4329 |
This theorem is referenced by: exmidontriimlem3 7159 |
Copyright terms: Public domain | W3C validator |