ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriimlem2 Unicode version

Theorem exmidontriimlem2 7199
Description: Lemma for exmidontriim 7202. (Contributed by Jim Kingdon, 12-Aug-2024.)
Hypotheses
Ref Expression
exmidontriimlem2.b  |-  ( ph  ->  B  e.  On )
exmidontriimlem2.em  |-  ( ph  -> EXMID )
exmidontriimlem2.hb  |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A
) )
Assertion
Ref Expression
exmidontriimlem2  |-  ( ph  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A )
)
Distinct variable groups:    y, A    y, B    ph, y

Proof of Theorem exmidontriimlem2
StepHypRef Expression
1 exmidontriimlem2.b . . . . . 6  |-  ( ph  ->  B  e.  On )
21ad2antrr 485 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  B  e.  On )
3 simpr 109 . . . . . 6  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  A  e.  y )
4 simplr 525 . . . . . 6  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  y  e.  B )
53, 4jca 304 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  ( A  e.  y  /\  y  e.  B )
)
6 ontr1 4374 . . . . 5  |-  ( B  e.  On  ->  (
( A  e.  y  /\  y  e.  B
)  ->  A  e.  B ) )
72, 5, 6sylc 62 . . . 4  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  A  e.  B )
87r19.29an 2612 . . 3  |-  ( (
ph  /\  E. y  e.  B  A  e.  y )  ->  A  e.  B )
98orcd 728 . 2  |-  ( (
ph  /\  E. y  e.  B  A  e.  y )  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
10 simpr 109 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  A  =  y )  ->  A  =  y )
11 simplr 525 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  A  =  y )  -> 
y  e.  B )
1210, 11eqeltrd 2247 . . . 4  |-  ( ( ( ph  /\  y  e.  B )  /\  A  =  y )  ->  A  e.  B )
1312r19.29an 2612 . . 3  |-  ( (
ph  /\  E. y  e.  B  A  =  y )  ->  A  e.  B )
1413orcd 728 . 2  |-  ( (
ph  /\  E. y  e.  B  A  =  y )  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
15 simpr 109 . . 3  |-  ( (
ph  /\  A. y  e.  B  y  e.  A )  ->  A. y  e.  B  y  e.  A )
1615olcd 729 . 2  |-  ( (
ph  /\  A. y  e.  B  y  e.  A )  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
17 exmidontriimlem2.hb . . 3  |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A
) )
18 exmidontriimlem2.em . . 3  |-  ( ph  -> EXMID )
19 exmidontriimlem1 7198 . . 3  |-  ( ( A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A
)  /\ EXMID )  ->  ( E. y  e.  B  A  e.  y  \/  E. y  e.  B  A  =  y  \/  A. y  e.  B  y  e.  A ) )
2017, 18, 19syl2anc 409 . 2  |-  ( ph  ->  ( E. y  e.  B  A  e.  y  \/  E. y  e.  B  A  =  y  \/  A. y  e.  B  y  e.  A
) )
219, 14, 16, 20mpjao3dan 1302 1  |-  ( ph  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    \/ w3o 972    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449  EXMIDwem 4180   Oncon0 4348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-uni 3797  df-tr 4088  df-exmid 4181  df-iord 4351  df-on 4353
This theorem is referenced by:  exmidontriimlem3  7200
  Copyright terms: Public domain W3C validator