ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriimlem2 Unicode version

Theorem exmidontriimlem2 7404
Description: Lemma for exmidontriim 7407. (Contributed by Jim Kingdon, 12-Aug-2024.)
Hypotheses
Ref Expression
exmidontriimlem2.b  |-  ( ph  ->  B  e.  On )
exmidontriimlem2.em  |-  ( ph  -> EXMID )
exmidontriimlem2.hb  |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A
) )
Assertion
Ref Expression
exmidontriimlem2  |-  ( ph  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A )
)
Distinct variable groups:    y, A    y, B    ph, y

Proof of Theorem exmidontriimlem2
StepHypRef Expression
1 exmidontriimlem2.b . . . . . 6  |-  ( ph  ->  B  e.  On )
21ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  B  e.  On )
3 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  A  e.  y )
4 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  y  e.  B )
53, 4jca 306 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  ( A  e.  y  /\  y  e.  B )
)
6 ontr1 4480 . . . . 5  |-  ( B  e.  On  ->  (
( A  e.  y  /\  y  e.  B
)  ->  A  e.  B ) )
72, 5, 6sylc 62 . . . 4  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  A  e.  B )
87r19.29an 2673 . . 3  |-  ( (
ph  /\  E. y  e.  B  A  e.  y )  ->  A  e.  B )
98orcd 738 . 2  |-  ( (
ph  /\  E. y  e.  B  A  e.  y )  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
10 simpr 110 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  A  =  y )  ->  A  =  y )
11 simplr 528 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  A  =  y )  -> 
y  e.  B )
1210, 11eqeltrd 2306 . . . 4  |-  ( ( ( ph  /\  y  e.  B )  /\  A  =  y )  ->  A  e.  B )
1312r19.29an 2673 . . 3  |-  ( (
ph  /\  E. y  e.  B  A  =  y )  ->  A  e.  B )
1413orcd 738 . 2  |-  ( (
ph  /\  E. y  e.  B  A  =  y )  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
15 simpr 110 . . 3  |-  ( (
ph  /\  A. y  e.  B  y  e.  A )  ->  A. y  e.  B  y  e.  A )
1615olcd 739 . 2  |-  ( (
ph  /\  A. y  e.  B  y  e.  A )  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
17 exmidontriimlem2.hb . . 3  |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A
) )
18 exmidontriimlem2.em . . 3  |-  ( ph  -> EXMID )
19 exmidontriimlem1 7403 . . 3  |-  ( ( A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A
)  /\ EXMID )  ->  ( E. y  e.  B  A  e.  y  \/  E. y  e.  B  A  =  y  \/  A. y  e.  B  y  e.  A ) )
2017, 18, 19syl2anc 411 . 2  |-  ( ph  ->  ( E. y  e.  B  A  e.  y  \/  E. y  e.  B  A  =  y  \/  A. y  e.  B  y  e.  A
) )
219, 14, 16, 20mpjao3dan 1341 1  |-  ( ph  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    \/ w3o 1001    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509  EXMIDwem 4278   Oncon0 4454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-uni 3889  df-tr 4183  df-exmid 4279  df-iord 4457  df-on 4459
This theorem is referenced by:  exmidontriimlem3  7405
  Copyright terms: Public domain W3C validator