ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriimlem2 Unicode version

Theorem exmidontriimlem2 7282
Description: Lemma for exmidontriim 7285. (Contributed by Jim Kingdon, 12-Aug-2024.)
Hypotheses
Ref Expression
exmidontriimlem2.b  |-  ( ph  ->  B  e.  On )
exmidontriimlem2.em  |-  ( ph  -> EXMID )
exmidontriimlem2.hb  |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A
) )
Assertion
Ref Expression
exmidontriimlem2  |-  ( ph  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A )
)
Distinct variable groups:    y, A    y, B    ph, y

Proof of Theorem exmidontriimlem2
StepHypRef Expression
1 exmidontriimlem2.b . . . . . 6  |-  ( ph  ->  B  e.  On )
21ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  B  e.  On )
3 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  A  e.  y )
4 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  y  e.  B )
53, 4jca 306 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  ( A  e.  y  /\  y  e.  B )
)
6 ontr1 4420 . . . . 5  |-  ( B  e.  On  ->  (
( A  e.  y  /\  y  e.  B
)  ->  A  e.  B ) )
72, 5, 6sylc 62 . . . 4  |-  ( ( ( ph  /\  y  e.  B )  /\  A  e.  y )  ->  A  e.  B )
87r19.29an 2636 . . 3  |-  ( (
ph  /\  E. y  e.  B  A  e.  y )  ->  A  e.  B )
98orcd 734 . 2  |-  ( (
ph  /\  E. y  e.  B  A  e.  y )  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
10 simpr 110 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  A  =  y )  ->  A  =  y )
11 simplr 528 . . . . 5  |-  ( ( ( ph  /\  y  e.  B )  /\  A  =  y )  -> 
y  e.  B )
1210, 11eqeltrd 2270 . . . 4  |-  ( ( ( ph  /\  y  e.  B )  /\  A  =  y )  ->  A  e.  B )
1312r19.29an 2636 . . 3  |-  ( (
ph  /\  E. y  e.  B  A  =  y )  ->  A  e.  B )
1413orcd 734 . 2  |-  ( (
ph  /\  E. y  e.  B  A  =  y )  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
15 simpr 110 . . 3  |-  ( (
ph  /\  A. y  e.  B  y  e.  A )  ->  A. y  e.  B  y  e.  A )
1615olcd 735 . 2  |-  ( (
ph  /\  A. y  e.  B  y  e.  A )  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A ) )
17 exmidontriimlem2.hb . . 3  |-  ( ph  ->  A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A
) )
18 exmidontriimlem2.em . . 3  |-  ( ph  -> EXMID )
19 exmidontriimlem1 7281 . . 3  |-  ( ( A. y  e.  B  ( A  e.  y  \/  A  =  y  \/  y  e.  A
)  /\ EXMID )  ->  ( E. y  e.  B  A  e.  y  \/  E. y  e.  B  A  =  y  \/  A. y  e.  B  y  e.  A ) )
2017, 18, 19syl2anc 411 . 2  |-  ( ph  ->  ( E. y  e.  B  A  e.  y  \/  E. y  e.  B  A  =  y  \/  A. y  e.  B  y  e.  A
) )
219, 14, 16, 20mpjao3dan 1318 1  |-  ( ph  ->  ( A  e.  B  \/  A. y  e.  B  y  e.  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473  EXMIDwem 4223   Oncon0 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-uni 3836  df-tr 4128  df-exmid 4224  df-iord 4397  df-on 4399
This theorem is referenced by:  exmidontriimlem3  7283
  Copyright terms: Public domain W3C validator