Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidontriimlem2 | Unicode version |
Description: Lemma for exmidontriim 7181. (Contributed by Jim Kingdon, 12-Aug-2024.) |
Ref | Expression |
---|---|
exmidontriimlem2.b | |
exmidontriimlem2.em | EXMID |
exmidontriimlem2.hb |
Ref | Expression |
---|---|
exmidontriimlem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidontriimlem2.b | . . . . . 6 | |
2 | 1 | ad2antrr 480 | . . . . 5 |
3 | simpr 109 | . . . . . 6 | |
4 | simplr 520 | . . . . . 6 | |
5 | 3, 4 | jca 304 | . . . . 5 |
6 | ontr1 4367 | . . . . 5 | |
7 | 2, 5, 6 | sylc 62 | . . . 4 |
8 | 7 | r19.29an 2608 | . . 3 |
9 | 8 | orcd 723 | . 2 |
10 | simpr 109 | . . . . 5 | |
11 | simplr 520 | . . . . 5 | |
12 | 10, 11 | eqeltrd 2243 | . . . 4 |
13 | 12 | r19.29an 2608 | . . 3 |
14 | 13 | orcd 723 | . 2 |
15 | simpr 109 | . . 3 | |
16 | 15 | olcd 724 | . 2 |
17 | exmidontriimlem2.hb | . . 3 | |
18 | exmidontriimlem2.em | . . 3 EXMID | |
19 | exmidontriimlem1 7177 | . . 3 EXMID | |
20 | 17, 18, 19 | syl2anc 409 | . 2 |
21 | 9, 14, 16, 20 | mpjao3dan 1297 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 w3o 967 wceq 1343 wcel 2136 wral 2444 wrex 2445 EXMIDwem 4173 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-uni 3790 df-tr 4081 df-exmid 4174 df-iord 4344 df-on 4346 |
This theorem is referenced by: exmidontriimlem3 7179 |
Copyright terms: Public domain | W3C validator |