Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nntr2 | Unicode version |
Description: Transitive law for natural numbers. (Contributed by Jim Kingdon, 22-Jul-2023.) |
Ref | Expression |
---|---|
nntr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 4587 | . . . . 5 | |
2 | 1 | ad3antlr 485 | . . . 4 |
3 | simpr 109 | . . . . 5 | |
4 | simprr 522 | . . . . . 6 | |
5 | 4 | adantr 274 | . . . . 5 |
6 | 3, 5 | jca 304 | . . . 4 |
7 | ontr1 4367 | . . . 4 | |
8 | 2, 6, 7 | sylc 62 | . . 3 |
9 | simpr 109 | . . . 4 | |
10 | 4 | adantr 274 | . . . 4 |
11 | 9, 10 | eqeltrd 2243 | . . 3 |
12 | simplrl 525 | . . . . 5 | |
13 | simpr 109 | . . . . 5 | |
14 | 12, 13 | sseldd 3143 | . . . 4 |
15 | simplr 520 | . . . . . . 7 | |
16 | elnn 4583 | . . . . . . 7 | |
17 | 4, 15, 16 | syl2anc 409 | . . . . . 6 |
18 | 17 | adantr 274 | . . . . 5 |
19 | nnord 4589 | . . . . 5 | |
20 | ordirr 4519 | . . . . 5 | |
21 | 18, 19, 20 | 3syl 17 | . . . 4 |
22 | 14, 21 | pm2.21dd 610 | . . 3 |
23 | simpll 519 | . . . 4 | |
24 | nntri3or 6461 | . . . 4 | |
25 | 23, 17, 24 | syl2anc 409 | . . 3 |
26 | 8, 11, 22, 25 | mpjao3dan 1297 | . 2 |
27 | 26 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3o 967 wceq 1343 wcel 2136 wss 3116 word 4340 con0 4341 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |