Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nntr2 | Unicode version |
Description: Transitive law for natural numbers. (Contributed by Jim Kingdon, 22-Jul-2023.) |
Ref | Expression |
---|---|
nntr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 4594 | . . . . 5 | |
2 | 1 | ad3antlr 490 | . . . 4 |
3 | simpr 109 | . . . . 5 | |
4 | simprr 527 | . . . . . 6 | |
5 | 4 | adantr 274 | . . . . 5 |
6 | 3, 5 | jca 304 | . . . 4 |
7 | ontr1 4374 | . . . 4 | |
8 | 2, 6, 7 | sylc 62 | . . 3 |
9 | simpr 109 | . . . 4 | |
10 | 4 | adantr 274 | . . . 4 |
11 | 9, 10 | eqeltrd 2247 | . . 3 |
12 | simplrl 530 | . . . . 5 | |
13 | simpr 109 | . . . . 5 | |
14 | 12, 13 | sseldd 3148 | . . . 4 |
15 | simplr 525 | . . . . . . 7 | |
16 | elnn 4590 | . . . . . . 7 | |
17 | 4, 15, 16 | syl2anc 409 | . . . . . 6 |
18 | 17 | adantr 274 | . . . . 5 |
19 | nnord 4596 | . . . . 5 | |
20 | ordirr 4526 | . . . . 5 | |
21 | 18, 19, 20 | 3syl 17 | . . . 4 |
22 | 14, 21 | pm2.21dd 615 | . . 3 |
23 | simpll 524 | . . . 4 | |
24 | nntri3or 6472 | . . . 4 | |
25 | 23, 17, 24 | syl2anc 409 | . . 3 |
26 | 8, 11, 22, 25 | mpjao3dan 1302 | . 2 |
27 | 26 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3o 972 wceq 1348 wcel 2141 wss 3121 word 4347 con0 4348 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |