Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nntr2 | Unicode version |
Description: Transitive law for natural numbers. (Contributed by Jim Kingdon, 22-Jul-2023.) |
Ref | Expression |
---|---|
nntr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 4603 | . . . . 5 | |
2 | 1 | ad3antlr 493 | . . . 4 |
3 | simpr 110 | . . . . 5 | |
4 | simprr 531 | . . . . . 6 | |
5 | 4 | adantr 276 | . . . . 5 |
6 | 3, 5 | jca 306 | . . . 4 |
7 | ontr1 4383 | . . . 4 | |
8 | 2, 6, 7 | sylc 62 | . . 3 |
9 | simpr 110 | . . . 4 | |
10 | 4 | adantr 276 | . . . 4 |
11 | 9, 10 | eqeltrd 2252 | . . 3 |
12 | simplrl 535 | . . . . 5 | |
13 | simpr 110 | . . . . 5 | |
14 | 12, 13 | sseldd 3154 | . . . 4 |
15 | simplr 528 | . . . . . . 7 | |
16 | elnn 4599 | . . . . . . 7 | |
17 | 4, 15, 16 | syl2anc 411 | . . . . . 6 |
18 | 17 | adantr 276 | . . . . 5 |
19 | nnord 4605 | . . . . 5 | |
20 | ordirr 4535 | . . . . 5 | |
21 | 18, 19, 20 | 3syl 17 | . . . 4 |
22 | 14, 21 | pm2.21dd 620 | . . 3 |
23 | simpll 527 | . . . 4 | |
24 | nntri3or 6484 | . . . 4 | |
25 | 23, 17, 24 | syl2anc 411 | . . 3 |
26 | 8, 11, 22, 25 | mpjao3dan 1307 | . 2 |
27 | 26 | ex 115 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 w3o 977 wceq 1353 wcel 2146 wss 3127 word 4356 con0 4357 com 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-tr 4097 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |