| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nntr2 | Unicode version | ||
| Description: Transitive law for natural numbers. (Contributed by Jim Kingdon, 22-Jul-2023.) |
| Ref | Expression |
|---|---|
| nntr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 4646 |
. . . . 5
| |
| 2 | 1 | ad3antlr 493 |
. . . 4
|
| 3 | simpr 110 |
. . . . 5
| |
| 4 | simprr 531 |
. . . . . 6
| |
| 5 | 4 | adantr 276 |
. . . . 5
|
| 6 | 3, 5 | jca 306 |
. . . 4
|
| 7 | ontr1 4424 |
. . . 4
| |
| 8 | 2, 6, 7 | sylc 62 |
. . 3
|
| 9 | simpr 110 |
. . . 4
| |
| 10 | 4 | adantr 276 |
. . . 4
|
| 11 | 9, 10 | eqeltrd 2273 |
. . 3
|
| 12 | simplrl 535 |
. . . . 5
| |
| 13 | simpr 110 |
. . . . 5
| |
| 14 | 12, 13 | sseldd 3184 |
. . . 4
|
| 15 | simplr 528 |
. . . . . . 7
| |
| 16 | elnn 4642 |
. . . . . . 7
| |
| 17 | 4, 15, 16 | syl2anc 411 |
. . . . . 6
|
| 18 | 17 | adantr 276 |
. . . . 5
|
| 19 | nnord 4648 |
. . . . 5
| |
| 20 | ordirr 4578 |
. . . . 5
| |
| 21 | 18, 19, 20 | 3syl 17 |
. . . 4
|
| 22 | 14, 21 | pm2.21dd 621 |
. . 3
|
| 23 | simpll 527 |
. . . 4
| |
| 24 | nntri3or 6551 |
. . . 4
| |
| 25 | 23, 17, 24 | syl2anc 411 |
. . 3
|
| 26 | 8, 11, 22, 25 | mpjao3dan 1318 |
. 2
|
| 27 | 26 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |