ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opcom Unicode version

Theorem opcom 4337
Description: An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.)
Hypotheses
Ref Expression
opcom.1  |-  A  e. 
_V
opcom.2  |-  B  e. 
_V
Assertion
Ref Expression
opcom  |-  ( <. A ,  B >.  = 
<. B ,  A >.  <->  A  =  B )

Proof of Theorem opcom
StepHypRef Expression
1 opcom.1 . . 3  |-  A  e. 
_V
2 opcom.2 . . 3  |-  B  e. 
_V
31, 2opth 4323 . 2  |-  ( <. A ,  B >.  = 
<. B ,  A >.  <->  ( A  =  B  /\  B  =  A )
)
4 eqcom 2231 . . 3  |-  ( B  =  A  <->  A  =  B )
54anbi2i 457 . 2  |-  ( ( A  =  B  /\  B  =  A )  <->  ( A  =  B  /\  A  =  B )
)
6 anidm 396 . 2  |-  ( ( A  =  B  /\  A  =  B )  <->  A  =  B )
73, 5, 63bitri 206 1  |-  ( <. A ,  B >.  = 
<. B ,  A >.  <->  A  =  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator