ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opcom Unicode version

Theorem opcom 4228
Description: An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.)
Hypotheses
Ref Expression
opcom.1  |-  A  e. 
_V
opcom.2  |-  B  e. 
_V
Assertion
Ref Expression
opcom  |-  ( <. A ,  B >.  = 
<. B ,  A >.  <->  A  =  B )

Proof of Theorem opcom
StepHypRef Expression
1 opcom.1 . . 3  |-  A  e. 
_V
2 opcom.2 . . 3  |-  B  e. 
_V
31, 2opth 4215 . 2  |-  ( <. A ,  B >.  = 
<. B ,  A >.  <->  ( A  =  B  /\  B  =  A )
)
4 eqcom 2167 . . 3  |-  ( B  =  A  <->  A  =  B )
54anbi2i 453 . 2  |-  ( ( A  =  B  /\  B  =  A )  <->  ( A  =  B  /\  A  =  B )
)
6 anidm 394 . 2  |-  ( ( A  =  B  /\  A  =  B )  <->  A  =  B )
73, 5, 63bitri 205 1  |-  ( <. A ,  B >.  = 
<. B ,  A >.  <->  A  =  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   <.cop 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator