ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeqex Unicode version

Theorem opeqex 4294
Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.)
Assertion
Ref Expression
opeqex  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( ( A  e. 
_V  /\  B  e.  _V )  <->  ( C  e. 
_V  /\  D  e.  _V ) ) )

Proof of Theorem opeqex
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq2 2269 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( x  e.  <. A ,  B >.  <->  x  e.  <. C ,  D >. ) )
21exbidv 1848 . 2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( E. x  x  e.  <. A ,  B >.  <->  E. x  x  e.  <. C ,  D >. ) )
3 opm 4278 . 2  |-  ( E. x  x  e.  <. A ,  B >.  <->  ( A  e.  _V  /\  B  e. 
_V ) )
4 opm 4278 . 2  |-  ( E. x  x  e.  <. C ,  D >.  <->  ( C  e.  _V  /\  D  e. 
_V ) )
52, 3, 43bitr3g 222 1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( ( A  e. 
_V  /\  B  e.  _V )  <->  ( C  e. 
_V  /\  D  e.  _V ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   <.cop 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642
This theorem is referenced by:  epelg  4337
  Copyright terms: Public domain W3C validator