ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeqex Unicode version

Theorem opeqex 4251
Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.)
Assertion
Ref Expression
opeqex  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( ( A  e. 
_V  /\  B  e.  _V )  <->  ( C  e. 
_V  /\  D  e.  _V ) ) )

Proof of Theorem opeqex
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq2 2241 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( x  e.  <. A ,  B >.  <->  x  e.  <. C ,  D >. ) )
21exbidv 1825 . 2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( E. x  x  e.  <. A ,  B >.  <->  E. x  x  e.  <. C ,  D >. ) )
3 opm 4236 . 2  |-  ( E. x  x  e.  <. A ,  B >.  <->  ( A  e.  _V  /\  B  e. 
_V ) )
4 opm 4236 . 2  |-  ( E. x  x  e.  <. C ,  D >.  <->  ( C  e.  _V  /\  D  e. 
_V ) )
52, 3, 43bitr3g 222 1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( ( A  e. 
_V  /\  B  e.  _V )  <->  ( C  e. 
_V  /\  D  e.  _V ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2739   <.cop 3597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603
This theorem is referenced by:  epelg  4292
  Copyright terms: Public domain W3C validator