Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opcom | GIF version |
Description: An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.) |
Ref | Expression |
---|---|
opcom.1 | ⊢ 𝐴 ∈ V |
opcom.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opcom | ⊢ (〈𝐴, 𝐵〉 = 〈𝐵, 𝐴〉 ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opcom.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | opcom.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opth 4196 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐵, 𝐴〉 ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐴)) |
4 | eqcom 2159 | . . 3 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
5 | 4 | anbi2i 453 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐴 = 𝐵)) |
6 | anidm 394 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵) | |
7 | 3, 5, 6 | 3bitri 205 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐵, 𝐴〉 ↔ 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 Vcvv 2712 〈cop 3563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |