ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opcom GIF version

Theorem opcom 4283
Description: An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.)
Hypotheses
Ref Expression
opcom.1 𝐴 ∈ V
opcom.2 𝐵 ∈ V
Assertion
Ref Expression
opcom (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ 𝐴 = 𝐵)

Proof of Theorem opcom
StepHypRef Expression
1 opcom.1 . . 3 𝐴 ∈ V
2 opcom.2 . . 3 𝐵 ∈ V
31, 2opth 4270 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ (𝐴 = 𝐵𝐵 = 𝐴))
4 eqcom 2198 . . 3 (𝐵 = 𝐴𝐴 = 𝐵)
54anbi2i 457 . 2 ((𝐴 = 𝐵𝐵 = 𝐴) ↔ (𝐴 = 𝐵𝐴 = 𝐵))
6 anidm 396 . 2 ((𝐴 = 𝐵𝐴 = 𝐵) ↔ 𝐴 = 𝐵)
73, 5, 63bitri 206 1 (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  cop 3625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator