Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelxp | Unicode version |
Description: Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 4601 | . 2 | |
2 | vex 2715 | . . . . . . 7 | |
3 | vex 2715 | . . . . . . 7 | |
4 | 2, 3 | opth2 4199 | . . . . . 6 |
5 | eleq1 2220 | . . . . . . 7 | |
6 | eleq1 2220 | . . . . . . 7 | |
7 | 5, 6 | bi2anan9 596 | . . . . . 6 |
8 | 4, 7 | sylbi 120 | . . . . 5 |
9 | 8 | biimprcd 159 | . . . 4 |
10 | 9 | rexlimivv 2580 | . . 3 |
11 | eqid 2157 | . . . 4 | |
12 | opeq1 3741 | . . . . . 6 | |
13 | 12 | eqeq2d 2169 | . . . . 5 |
14 | opeq2 3742 | . . . . . 6 | |
15 | 14 | eqeq2d 2169 | . . . . 5 |
16 | 13, 15 | rspc2ev 2831 | . . . 4 |
17 | 11, 16 | mp3an3 1308 | . . 3 |
18 | 10, 17 | impbii 125 | . 2 |
19 | 1, 18 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1335 wcel 2128 wrex 2436 cop 3563 cxp 4581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-opab 4026 df-xp 4589 |
This theorem is referenced by: brxp 4614 opelxpi 4615 opelxp1 4617 opelxp2 4618 opthprc 4634 elxp3 4637 opeliunxp 4638 optocl 4659 xpiindim 4720 opelres 4868 resiexg 4908 codir 4971 qfto 4972 xpmlem 5003 rnxpid 5017 ssrnres 5025 dfco2 5082 relssdmrn 5103 ressn 5123 opelf 5338 fnovex 5848 oprab4 5886 resoprab 5911 elmpocl 6012 fo1stresm 6103 fo2ndresm 6104 dfoprab4 6134 xporderlem 6172 f1od2 6176 brecop 6563 xpdom2 6769 djulclb 6989 djuss 7004 enq0enq 7334 enq0sym 7335 enq0tr 7337 nqnq0pi 7341 nnnq0lem1 7349 elinp 7377 genipv 7412 prsrlem1 7645 gt0srpr 7651 opelcn 7729 opelreal 7730 elreal2 7733 frecuzrdgrrn 10289 frec2uzrdg 10290 frecuzrdgrcl 10291 frecuzrdgsuc 10295 frecuzrdgrclt 10296 frecuzrdgsuctlem 10304 fisumcom2 11317 fprodcom2fi 11505 sqpweven 12029 2sqpwodd 12030 phimullem 12077 txuni2 12616 txcnp 12631 txcnmpt 12633 txdis1cn 12638 txlm 12639 xmeterval 12795 limccnp2lem 13005 limccnp2cntop 13006 |
Copyright terms: Public domain | W3C validator |