| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxp | Unicode version | ||
| Description: Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 4711 |
. 2
| |
| 2 | vex 2779 |
. . . . . . 7
| |
| 3 | vex 2779 |
. . . . . . 7
| |
| 4 | 2, 3 | opth2 4302 |
. . . . . 6
|
| 5 | eleq1 2270 |
. . . . . . 7
| |
| 6 | eleq1 2270 |
. . . . . . 7
| |
| 7 | 5, 6 | bi2anan9 606 |
. . . . . 6
|
| 8 | 4, 7 | sylbi 121 |
. . . . 5
|
| 9 | 8 | biimprcd 160 |
. . . 4
|
| 10 | 9 | rexlimivv 2631 |
. . 3
|
| 11 | eqid 2207 |
. . . 4
| |
| 12 | opeq1 3833 |
. . . . . 6
| |
| 13 | 12 | eqeq2d 2219 |
. . . . 5
|
| 14 | opeq2 3834 |
. . . . . 6
| |
| 15 | 14 | eqeq2d 2219 |
. . . . 5
|
| 16 | 13, 15 | rspc2ev 2899 |
. . . 4
|
| 17 | 11, 16 | mp3an3 1339 |
. . 3
|
| 18 | 10, 17 | impbii 126 |
. 2
|
| 19 | 1, 18 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 df-xp 4699 |
| This theorem is referenced by: brxp 4724 opelxpi 4725 opelxp1 4727 opelxp2 4728 opthprc 4744 elxp3 4747 opeliunxp 4748 optocl 4769 xpiindim 4833 opelres 4983 resiexg 5023 restidsing 5034 codir 5090 qfto 5091 xpmlem 5122 rnxpid 5136 ssrnres 5144 dfco2 5201 relssdmrn 5222 ressn 5242 opelf 5468 fnovex 6000 oprab4 6039 resoprab 6064 elmpocl 6164 fo1stresm 6270 fo2ndresm 6271 dfoprab4 6301 xporderlem 6340 f1od2 6344 brecop 6735 xpdom2 6951 djulclb 7183 djuss 7198 enq0enq 7579 enq0sym 7580 enq0tr 7582 nqnq0pi 7586 nnnq0lem1 7594 elinp 7622 genipv 7657 prsrlem1 7890 gt0srpr 7896 opelcn 7974 opelreal 7975 elreal2 7978 frecuzrdgrrn 10590 frec2uzrdg 10591 frecuzrdgrcl 10592 frecuzrdgsuc 10596 frecuzrdgrclt 10597 frecuzrdgsuctlem 10605 fisumcom2 11864 fprodcom2fi 12052 sqpweven 12612 2sqpwodd 12613 phimullem 12662 relelbasov 13009 txuni2 14843 txcnp 14858 txcnmpt 14860 txdis1cn 14865 txlm 14866 xmeterval 15022 limccnp2lem 15263 limccnp2cntop 15264 lgsquadlem1 15669 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |