ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelxp Unicode version

Theorem opelxp 4657
Description: Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelxp  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  <->  ( A  e.  C  /\  B  e.  D ) )

Proof of Theorem opelxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 4645 . 2  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  <->  E. x  e.  C  E. y  e.  D  <. A ,  B >.  = 
<. x ,  y >.
)
2 vex 2741 . . . . . . 7  |-  x  e. 
_V
3 vex 2741 . . . . . . 7  |-  y  e. 
_V
42, 3opth2 4241 . . . . . 6  |-  ( <. A ,  B >.  = 
<. x ,  y >.  <->  ( A  =  x  /\  B  =  y )
)
5 eleq1 2240 . . . . . . 7  |-  ( A  =  x  ->  ( A  e.  C  <->  x  e.  C ) )
6 eleq1 2240 . . . . . . 7  |-  ( B  =  y  ->  ( B  e.  D  <->  y  e.  D ) )
75, 6bi2anan9 606 . . . . . 6  |-  ( ( A  =  x  /\  B  =  y )  ->  ( ( A  e.  C  /\  B  e.  D )  <->  ( x  e.  C  /\  y  e.  D ) ) )
84, 7sylbi 121 . . . . 5  |-  ( <. A ,  B >.  = 
<. x ,  y >.  ->  ( ( A  e.  C  /\  B  e.  D )  <->  ( x  e.  C  /\  y  e.  D ) ) )
98biimprcd 160 . . . 4  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ( <. A ,  B >.  =  <. x ,  y
>.  ->  ( A  e.  C  /\  B  e.  D ) ) )
109rexlimivv 2600 . . 3  |-  ( E. x  e.  C  E. y  e.  D  <. A ,  B >.  =  <. x ,  y >.  ->  ( A  e.  C  /\  B  e.  D )
)
11 eqid 2177 . . . 4  |-  <. A ,  B >.  =  <. A ,  B >.
12 opeq1 3779 . . . . . 6  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
1312eqeq2d 2189 . . . . 5  |-  ( x  =  A  ->  ( <. A ,  B >.  = 
<. x ,  y >.  <->  <. A ,  B >.  = 
<. A ,  y >.
) )
14 opeq2 3780 . . . . . 6  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
1514eqeq2d 2189 . . . . 5  |-  ( y  =  B  ->  ( <. A ,  B >.  = 
<. A ,  y >.  <->  <. A ,  B >.  = 
<. A ,  B >. ) )
1613, 15rspc2ev 2857 . . . 4  |-  ( ( A  e.  C  /\  B  e.  D  /\  <. A ,  B >.  = 
<. A ,  B >. )  ->  E. x  e.  C  E. y  e.  D  <. A ,  B >.  = 
<. x ,  y >.
)
1711, 16mp3an3 1326 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  E. x  e.  C  E. y  e.  D  <. A ,  B >.  = 
<. x ,  y >.
)
1810, 17impbii 126 . 2  |-  ( E. x  e.  C  E. y  e.  D  <. A ,  B >.  =  <. x ,  y >.  <->  ( A  e.  C  /\  B  e.  D ) )
191, 18bitri 184 1  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  <->  ( A  e.  C  /\  B  e.  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   <.cop 3596    X. cxp 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-opab 4066  df-xp 4633
This theorem is referenced by:  brxp  4658  opelxpi  4659  opelxp1  4661  opelxp2  4662  opthprc  4678  elxp3  4681  opeliunxp  4682  optocl  4703  xpiindim  4765  opelres  4913  resiexg  4953  restidsing  4964  codir  5018  qfto  5019  xpmlem  5050  rnxpid  5064  ssrnres  5072  dfco2  5129  relssdmrn  5150  ressn  5170  opelf  5388  fnovex  5908  oprab4  5946  resoprab  5971  elmpocl  6069  fo1stresm  6162  fo2ndresm  6163  dfoprab4  6193  xporderlem  6232  f1od2  6236  brecop  6625  xpdom2  6831  djulclb  7054  djuss  7069  enq0enq  7430  enq0sym  7431  enq0tr  7433  nqnq0pi  7437  nnnq0lem1  7445  elinp  7473  genipv  7508  prsrlem1  7741  gt0srpr  7747  opelcn  7825  opelreal  7826  elreal2  7829  frecuzrdgrrn  10408  frec2uzrdg  10409  frecuzrdgrcl  10410  frecuzrdgsuc  10414  frecuzrdgrclt  10415  frecuzrdgsuctlem  10423  fisumcom2  11446  fprodcom2fi  11634  sqpweven  12175  2sqpwodd  12176  phimullem  12225  txuni2  13759  txcnp  13774  txcnmpt  13776  txdis1cn  13781  txlm  13782  xmeterval  13938  limccnp2lem  14148  limccnp2cntop  14149
  Copyright terms: Public domain W3C validator