| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxp | Unicode version | ||
| Description: Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 4737 |
. 2
| |
| 2 | vex 2802 |
. . . . . . 7
| |
| 3 | vex 2802 |
. . . . . . 7
| |
| 4 | 2, 3 | opth2 4326 |
. . . . . 6
|
| 5 | eleq1 2292 |
. . . . . . 7
| |
| 6 | eleq1 2292 |
. . . . . . 7
| |
| 7 | 5, 6 | bi2anan9 608 |
. . . . . 6
|
| 8 | 4, 7 | sylbi 121 |
. . . . 5
|
| 9 | 8 | biimprcd 160 |
. . . 4
|
| 10 | 9 | rexlimivv 2654 |
. . 3
|
| 11 | eqid 2229 |
. . . 4
| |
| 12 | opeq1 3857 |
. . . . . 6
| |
| 13 | 12 | eqeq2d 2241 |
. . . . 5
|
| 14 | opeq2 3858 |
. . . . . 6
| |
| 15 | 14 | eqeq2d 2241 |
. . . . 5
|
| 16 | 13, 15 | rspc2ev 2922 |
. . . 4
|
| 17 | 11, 16 | mp3an3 1360 |
. . 3
|
| 18 | 10, 17 | impbii 126 |
. 2
|
| 19 | 1, 18 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-xp 4725 |
| This theorem is referenced by: brxp 4750 opelxpi 4751 opelxp1 4753 opelxp2 4754 opthprc 4770 elxp3 4773 opeliunxp 4774 optocl 4795 xpiindim 4859 opelres 5010 resiexg 5050 restidsing 5061 codir 5117 qfto 5118 xpmlem 5149 rnxpid 5163 ssrnres 5171 dfco2 5228 relssdmrn 5249 ressn 5269 opelf 5496 fnovex 6034 oprab4 6075 resoprab 6100 elmpocl 6200 fo1stresm 6307 fo2ndresm 6308 dfoprab4 6338 xporderlem 6377 f1od2 6381 brecop 6772 xpdom2 6990 djulclb 7222 djuss 7237 enq0enq 7618 enq0sym 7619 enq0tr 7621 nqnq0pi 7625 nnnq0lem1 7633 elinp 7661 genipv 7696 prsrlem1 7929 gt0srpr 7935 opelcn 8013 opelreal 8014 elreal2 8017 frecuzrdgrrn 10630 frec2uzrdg 10631 frecuzrdgrcl 10632 frecuzrdgsuc 10636 frecuzrdgrclt 10637 frecuzrdgsuctlem 10645 fisumcom2 11949 fprodcom2fi 12137 sqpweven 12697 2sqpwodd 12698 phimullem 12747 relelbasov 13095 txuni2 14930 txcnp 14945 txcnmpt 14947 txdis1cn 14952 txlm 14953 xmeterval 15109 limccnp2lem 15350 limccnp2cntop 15351 lgsquadlem1 15756 lgsquadlem2 15757 |
| Copyright terms: Public domain | W3C validator |