Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelxp | Unicode version |
Description: Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 4629 | . 2 | |
2 | vex 2733 | . . . . . . 7 | |
3 | vex 2733 | . . . . . . 7 | |
4 | 2, 3 | opth2 4225 | . . . . . 6 |
5 | eleq1 2233 | . . . . . . 7 | |
6 | eleq1 2233 | . . . . . . 7 | |
7 | 5, 6 | bi2anan9 601 | . . . . . 6 |
8 | 4, 7 | sylbi 120 | . . . . 5 |
9 | 8 | biimprcd 159 | . . . 4 |
10 | 9 | rexlimivv 2593 | . . 3 |
11 | eqid 2170 | . . . 4 | |
12 | opeq1 3765 | . . . . . 6 | |
13 | 12 | eqeq2d 2182 | . . . . 5 |
14 | opeq2 3766 | . . . . . 6 | |
15 | 14 | eqeq2d 2182 | . . . . 5 |
16 | 13, 15 | rspc2ev 2849 | . . . 4 |
17 | 11, 16 | mp3an3 1321 | . . 3 |
18 | 10, 17 | impbii 125 | . 2 |
19 | 1, 18 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wcel 2141 wrex 2449 cop 3586 cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-xp 4617 |
This theorem is referenced by: brxp 4642 opelxpi 4643 opelxp1 4645 opelxp2 4646 opthprc 4662 elxp3 4665 opeliunxp 4666 optocl 4687 xpiindim 4748 opelres 4896 resiexg 4936 codir 4999 qfto 5000 xpmlem 5031 rnxpid 5045 ssrnres 5053 dfco2 5110 relssdmrn 5131 ressn 5151 opelf 5369 fnovex 5886 oprab4 5924 resoprab 5949 elmpocl 6047 fo1stresm 6140 fo2ndresm 6141 dfoprab4 6171 xporderlem 6210 f1od2 6214 brecop 6603 xpdom2 6809 djulclb 7032 djuss 7047 enq0enq 7393 enq0sym 7394 enq0tr 7396 nqnq0pi 7400 nnnq0lem1 7408 elinp 7436 genipv 7471 prsrlem1 7704 gt0srpr 7710 opelcn 7788 opelreal 7789 elreal2 7792 frecuzrdgrrn 10364 frec2uzrdg 10365 frecuzrdgrcl 10366 frecuzrdgsuc 10370 frecuzrdgrclt 10371 frecuzrdgsuctlem 10379 fisumcom2 11401 fprodcom2fi 11589 sqpweven 12129 2sqpwodd 12130 phimullem 12179 txuni2 13050 txcnp 13065 txcnmpt 13067 txdis1cn 13072 txlm 13073 xmeterval 13229 limccnp2lem 13439 limccnp2cntop 13440 |
Copyright terms: Public domain | W3C validator |