Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelxp | Unicode version |
Description: Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 4622 | . 2 | |
2 | vex 2729 | . . . . . . 7 | |
3 | vex 2729 | . . . . . . 7 | |
4 | 2, 3 | opth2 4218 | . . . . . 6 |
5 | eleq1 2229 | . . . . . . 7 | |
6 | eleq1 2229 | . . . . . . 7 | |
7 | 5, 6 | bi2anan9 596 | . . . . . 6 |
8 | 4, 7 | sylbi 120 | . . . . 5 |
9 | 8 | biimprcd 159 | . . . 4 |
10 | 9 | rexlimivv 2589 | . . 3 |
11 | eqid 2165 | . . . 4 | |
12 | opeq1 3758 | . . . . . 6 | |
13 | 12 | eqeq2d 2177 | . . . . 5 |
14 | opeq2 3759 | . . . . . 6 | |
15 | 14 | eqeq2d 2177 | . . . . 5 |
16 | 13, 15 | rspc2ev 2845 | . . . 4 |
17 | 11, 16 | mp3an3 1316 | . . 3 |
18 | 10, 17 | impbii 125 | . 2 |
19 | 1, 18 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 wrex 2445 cop 3579 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 |
This theorem is referenced by: brxp 4635 opelxpi 4636 opelxp1 4638 opelxp2 4639 opthprc 4655 elxp3 4658 opeliunxp 4659 optocl 4680 xpiindim 4741 opelres 4889 resiexg 4929 codir 4992 qfto 4993 xpmlem 5024 rnxpid 5038 ssrnres 5046 dfco2 5103 relssdmrn 5124 ressn 5144 opelf 5359 fnovex 5875 oprab4 5913 resoprab 5938 elmpocl 6036 fo1stresm 6129 fo2ndresm 6130 dfoprab4 6160 xporderlem 6199 f1od2 6203 brecop 6591 xpdom2 6797 djulclb 7020 djuss 7035 enq0enq 7372 enq0sym 7373 enq0tr 7375 nqnq0pi 7379 nnnq0lem1 7387 elinp 7415 genipv 7450 prsrlem1 7683 gt0srpr 7689 opelcn 7767 opelreal 7768 elreal2 7771 frecuzrdgrrn 10343 frec2uzrdg 10344 frecuzrdgrcl 10345 frecuzrdgsuc 10349 frecuzrdgrclt 10350 frecuzrdgsuctlem 10358 fisumcom2 11379 fprodcom2fi 11567 sqpweven 12107 2sqpwodd 12108 phimullem 12157 txuni2 12896 txcnp 12911 txcnmpt 12913 txdis1cn 12918 txlm 12919 xmeterval 13075 limccnp2lem 13285 limccnp2cntop 13286 |
Copyright terms: Public domain | W3C validator |