| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxp | Unicode version | ||
| Description: Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 4694 |
. 2
| |
| 2 | vex 2775 |
. . . . . . 7
| |
| 3 | vex 2775 |
. . . . . . 7
| |
| 4 | 2, 3 | opth2 4285 |
. . . . . 6
|
| 5 | eleq1 2268 |
. . . . . . 7
| |
| 6 | eleq1 2268 |
. . . . . . 7
| |
| 7 | 5, 6 | bi2anan9 606 |
. . . . . 6
|
| 8 | 4, 7 | sylbi 121 |
. . . . 5
|
| 9 | 8 | biimprcd 160 |
. . . 4
|
| 10 | 9 | rexlimivv 2629 |
. . 3
|
| 11 | eqid 2205 |
. . . 4
| |
| 12 | opeq1 3819 |
. . . . . 6
| |
| 13 | 12 | eqeq2d 2217 |
. . . . 5
|
| 14 | opeq2 3820 |
. . . . . 6
| |
| 15 | 14 | eqeq2d 2217 |
. . . . 5
|
| 16 | 13, 15 | rspc2ev 2892 |
. . . 4
|
| 17 | 11, 16 | mp3an3 1339 |
. . 3
|
| 18 | 10, 17 | impbii 126 |
. 2
|
| 19 | 1, 18 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4107 df-xp 4682 |
| This theorem is referenced by: brxp 4707 opelxpi 4708 opelxp1 4710 opelxp2 4711 opthprc 4727 elxp3 4730 opeliunxp 4731 optocl 4752 xpiindim 4816 opelres 4965 resiexg 5005 restidsing 5016 codir 5072 qfto 5073 xpmlem 5104 rnxpid 5118 ssrnres 5126 dfco2 5183 relssdmrn 5204 ressn 5224 opelf 5449 fnovex 5979 oprab4 6018 resoprab 6043 elmpocl 6143 fo1stresm 6249 fo2ndresm 6250 dfoprab4 6280 xporderlem 6319 f1od2 6323 brecop 6714 xpdom2 6928 djulclb 7159 djuss 7174 enq0enq 7546 enq0sym 7547 enq0tr 7549 nqnq0pi 7553 nnnq0lem1 7561 elinp 7589 genipv 7624 prsrlem1 7857 gt0srpr 7863 opelcn 7941 opelreal 7942 elreal2 7945 frecuzrdgrrn 10555 frec2uzrdg 10556 frecuzrdgrcl 10557 frecuzrdgsuc 10561 frecuzrdgrclt 10562 frecuzrdgsuctlem 10570 fisumcom2 11782 fprodcom2fi 11970 sqpweven 12530 2sqpwodd 12531 phimullem 12580 relelbasov 12927 txuni2 14761 txcnp 14776 txcnmpt 14778 txdis1cn 14783 txlm 14784 xmeterval 14940 limccnp2lem 15181 limccnp2cntop 15182 lgsquadlem1 15587 lgsquadlem2 15588 |
| Copyright terms: Public domain | W3C validator |