![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelreal | Unicode version |
Description: Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
opelreal |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2188 |
. 2
![]() ![]() ![]() ![]() | |
2 | df-r 7838 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | eleq2i 2255 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | opelxp 4670 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 0r 7766 |
. . . . . 6
![]() ![]() ![]() ![]() | |
6 | 5 | elexi 2763 |
. . . . 5
![]() ![]() ![]() ![]() |
7 | 6 | elsn 3622 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | anbi2i 457 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 3, 4, 8 | 3bitri 206 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 1, 9 | mpbiran2 942 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-coll 4132 ax-sep 4135 ax-nul 4143 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-iinf 4601 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-ral 2472 df-rex 2473 df-reu 2474 df-rab 2476 df-v 2753 df-sbc 2977 df-csb 3072 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-iun 3902 df-br 4018 df-opab 4079 df-mpt 4080 df-tr 4116 df-eprel 4303 df-id 4307 df-po 4310 df-iso 4311 df-iord 4380 df-on 4382 df-suc 4385 df-iom 4604 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 df-iota 5192 df-fun 5232 df-fn 5233 df-f 5234 df-f1 5235 df-fo 5236 df-f1o 5237 df-fv 5238 df-ov 5893 df-oprab 5894 df-mpo 5895 df-1st 6158 df-2nd 6159 df-recs 6323 df-irdg 6388 df-1o 6434 df-oadd 6438 df-omul 6439 df-er 6552 df-ec 6554 df-qs 6558 df-ni 7320 df-pli 7321 df-mi 7322 df-lti 7323 df-plpq 7360 df-mpq 7361 df-enq 7363 df-nqqs 7364 df-plqqs 7365 df-mqqs 7366 df-1nqqs 7367 df-rq 7368 df-ltnqqs 7369 df-inp 7482 df-i1p 7483 df-enr 7742 df-nr 7743 df-0r 7747 df-r 7838 |
This theorem is referenced by: ltresr 7855 pitore 7866 recnnre 7867 peano1nnnn 7868 ax1cn 7877 ax1re 7878 axaddrcl 7881 axmulrcl 7883 axrnegex 7895 axprecex 7896 axcnre 7897 axcaucvglemres 7915 axpre-suploclemres 7917 |
Copyright terms: Public domain | W3C validator |