ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovprc Unicode version

Theorem ovprc 5910
Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
ovprc1.1  |-  Rel  dom  F
Assertion
Ref Expression
ovprc  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A F B )  =  (/) )

Proof of Theorem ovprc
StepHypRef Expression
1 df-ov 5878 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 opprc 3800 . . . 4  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )
3 0ex 4131 . . . 4  |-  (/)  e.  _V
42, 3eqeltrdi 2268 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  e. 
_V )
5 df-br 4005 . . . . 5  |-  ( A dom  F  B  <->  <. A ,  B >.  e.  dom  F
)
6 ovprc1.1 . . . . . 6  |-  Rel  dom  F
7 brrelex12 4665 . . . . . 6  |-  ( ( Rel  dom  F  /\  A dom  F  B )  ->  ( A  e. 
_V  /\  B  e.  _V ) )
86, 7mpan 424 . . . . 5  |-  ( A dom  F  B  -> 
( A  e.  _V  /\  B  e.  _V )
)
95, 8sylbir 135 . . . 4  |-  ( <. A ,  B >.  e. 
dom  F  ->  ( A  e.  _V  /\  B  e.  _V ) )
109con3i 632 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  -.  <. A ,  B >.  e.  dom  F )
11 ndmfvg 5547 . . 3  |-  ( (
<. A ,  B >.  e. 
_V  /\  -.  <. A ,  B >.  e.  dom  F
)  ->  ( F `  <. A ,  B >. )  =  (/) )
124, 10, 11syl2anc 411 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( F `  <. A ,  B >. )  =  (/) )
131, 12eqtrid 2222 1  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A F B )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2738   (/)c0 3423   <.cop 3596   class class class wbr 4004   dom cdm 4627   Rel wrel 4632   ` cfv 5217  (class class class)co 5875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-dm 4637  df-iota 5179  df-fv 5225  df-ov 5878
This theorem is referenced by:  ovprc1  5911  ovprc2  5912
  Copyright terms: Public domain W3C validator