| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opthpr | Unicode version | ||
| Description: A way to represent ordered pairs using unordered pairs with distinct members. (Contributed by NM, 27-Mar-2007.) | 
| Ref | Expression | 
|---|---|
| preq12b.1 | 
 | 
| preq12b.2 | 
 | 
| preq12b.3 | 
 | 
| preq12b.4 | 
 | 
| Ref | Expression | 
|---|---|
| opthpr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | preq12b.1 | 
. . 3
 | |
| 2 | preq12b.2 | 
. . 3
 | |
| 3 | preq12b.3 | 
. . 3
 | |
| 4 | preq12b.4 | 
. . 3
 | |
| 5 | 1, 2, 3, 4 | preq12b 3800 | 
. 2
 | 
| 6 | idd 21 | 
. . . 4
 | |
| 7 | df-ne 2368 | 
. . . . . 6
 | |
| 8 | pm2.21 618 | 
. . . . . 6
 | |
| 9 | 7, 8 | sylbi 121 | 
. . . . 5
 | 
| 10 | 9 | impd 254 | 
. . . 4
 | 
| 11 | 6, 10 | jaod 718 | 
. . 3
 | 
| 12 | orc 713 | 
. . 3
 | |
| 13 | 11, 12 | impbid1 142 | 
. 2
 | 
| 14 | 5, 13 | bitrid 192 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |