| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opthpr | Unicode version | ||
| Description: A way to represent ordered pairs using unordered pairs with distinct members. (Contributed by NM, 27-Mar-2007.) |
| Ref | Expression |
|---|---|
| preq12b.1 |
|
| preq12b.2 |
|
| preq12b.3 |
|
| preq12b.4 |
|
| Ref | Expression |
|---|---|
| opthpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12b.1 |
. . 3
| |
| 2 | preq12b.2 |
. . 3
| |
| 3 | preq12b.3 |
. . 3
| |
| 4 | preq12b.4 |
. . 3
| |
| 5 | 1, 2, 3, 4 | preq12b 3824 |
. 2
|
| 6 | idd 21 |
. . . 4
| |
| 7 | df-ne 2379 |
. . . . . 6
| |
| 8 | pm2.21 618 |
. . . . . 6
| |
| 9 | 7, 8 | sylbi 121 |
. . . . 5
|
| 10 | 9 | impd 254 |
. . . 4
|
| 11 | 6, 10 | jaod 719 |
. . 3
|
| 12 | orc 714 |
. . 3
| |
| 13 | 11, 12 | impbid1 142 |
. 2
|
| 14 | 5, 13 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |